КОСМОДРОМ - Электронные компоненты для разработки и производства - Харьков - Украина


 


Как купить...     

Склад обновлен: 6 июля 2020 г

ICQ: 624305018
 

 

EnglishRussianUkrainian

Перейти в корзину

Специальное предложение со склада на продукцию STMicroelectronics — микроэлектронной компании, одной из крупнейших, занимающихся разработкой, изготовлением и продажей различных полупроводниковых электронных и микроэлектронных компонентов

 
 

Все о датчиках температуры:

  Датчики температуры компании STMicroelectronics
  Температурные датчики ON Semiconductor
  Аналоговые и цифровые датчики компании National Semiconductor
  Аналоговые и цифровые датчики температуры производства Analog Devices
  Специальное предложение на цифровой датчик температуры DS18B20
  Платиновые термосопротивления (термодатчики) производства HoneyWell серии HEL-7XX
 
Платиновые термосопротивления (термодатчики) производства HoneyWell серии 7XX

  Цифровые датчики температуры MAXIM
  Аналоговые датчики температуры Philips (NXP)
  Интегральные датчики температуры фирмы National Semiconductor
  Резистивные датчики типа Pt на стеклянной подложке
  Термореле KSD 9700 с биметаллическими термочувствительными элементами

 

Интегральные датчики температуры фирмы National Semiconductor

Интегральные датчики температуры (ИДТ) являются неотъемлемой частью практически любого современного электронного устройства. С одной стороны это связано с необходимостью обеспечения требуемых характеристик аппаратуры в широком диапазоне температур, а с другой — с проблемой обеспечения оптимального теплового режима элементов и защиты их от перегрева. Отличительной особенностью ИДТ по сравнению с традиционными термодатчиками (термисторами, термопарами и др.) является сравнительная простота их использования, поскольку они не требуют линеаризации и компенсации холодного спая, что делает весьма целесообразным их применение во всевозможных термометрах и терморегуляторах.

 

Последнее поколение ИДТ с специализированными цифровыми интерфейсами, так называемые интеллектуальные ИДТ (Smart Temperature Sensor) широко применяются для стабилизации тепловых режимов вычислительных систем, измерительной аппаратуры и в технике радиосвязи.

Фирма National Semiconductor (www.national.com) является одним из ведущих мировых производителей интегральных датчиков температуры различных типов [1], которые в огромных количествах используются в различных изделиях электронной техники, выпускаемых в разных странах.Физическая основа работы ИДТ заложена в температурной зависимости падения напряжения на прямо смещенном кремниевом p-n переходе, котораявыражается хорошо известной формулой

U = (kT/q)'ln(I/Is)

где U — напряжение на переходе,

k — постоянная Больцмана,

T— абсолютная температура,

q— заряд электрона,

I— ток через переход,

Is — обратный ток насыщения, величина которого зависит от конфигурации и температуры перехода.

Отметим, однако, что вышеприведенную зависимость непосредственно использовать для точного измерения температуры нельзя по двум причинам: во-первых, существует значительный разброс «начального» прямого падения напряжения на переходе, связанный с технологией его изготовления, а во-вторых, существенный вклад в зависимость U(T) вносит температурная зависимость Is. В связи с этим для измерения температуры в ИДТ используют разность напряжений двух p-n переходов, а точнее, напряжений базаэмиттер .UBE двух транзисторов VT1 и VT2, которая может быть определена из выражения .UBE = UBE1 – UBE2 = (kT/q)'ln(JE1/IE2)

где JE1 и JE2 — плотность тока эмиттеров транзисторов. Эффекты, связанные с током насыщения и начальным падением напряжения на p-n переходах приэтом компенсируются, и температурная зависимость становится линейной с высокой точностью. В реальных устройствах используют транзисторы с разными площадями эмиттерных переходов, что обеспечивает заданное соотношение плотностей тока эмиттеров, или набор одинаковых транзисторов, соединенных параллельно — так называемая ячейка Брока (Brokaw Cell) [2]. Практическая схема измерения температуры с температурным коэффициентом выходного напряжения 10 мВ/°K приведена на рис. 1.

 

Требуемое значение коэффициента достигается определенным соотношением сопротивлений резисторов 26R и 23R. Резистор, обозначенный на рисунке 100R, используется для точной калибровки датчика. Данная схема применяется в популярных микросхемах ИДТ LM135 — LM335 (отечественный аналог К1019ЕМ1), которые будут подробно рассмотрены ниже. Дальнейшее совершенствование интегральных датчиков температуры было направлено на повышение линейности и точности измерений. Появились также специализированные микросхемы — контроллеры для работы с удаленными термочувствительными элементами (диодами или транзисторами), которые могут располагаться непосредственно в контролируемом устройстве, например микропроцессоре.

В этом случае микросхема-контроллер проводит поочередное измерение выходных напряжений сенсора при двух заданных значениях тока, а затем расчет разности этих напряжений и температуры согласно приведеннымформулам.

Максимальный диапазон температур, перекрываемый интегральными полупроводниковыми датчиками, составляет от –60 до +200 °С, минимальная погрешность измерений зависит от диапазона измеряемых температур и может составлять менее десятых долей градуса. Следует отметить, что точность измерения температуры зависит от типа корпуса датчика, его конструктивного выполнения и размещения в системе. На результаты измерений влияет также собственное тепловыделение ИДТ, определяемое приложенным к нему напряжением и потребляемым током.

Перейдем теперь к рассмотрению доступных интегральных термодатчиков National Semiconductor (табл. 1).

 

Тип

Диапазон темп

Тип выхода

Темп. коэфф. - дискретность

Напряжение питания

Потр.ток

Погреш-ность

Примечание

С

мВ/С - С

В

мА

С

мин

мах

тип

мин

мах

мах

тип

LM135

–55

150

Аналоговый

10

шунт

 

5

±1; ±1,5

Прецизионный, Uвых, мВ = 10 ·°K

LM20

–55

130

Аналоговый

–11,7

2,4

5,5

0,01

±2,5; ±5

Микромощный, Uвых, мВ = –11,7 ·°C + 1864

LM235

–40

125

Аналоговый

10

шунт

 

5

±1; ±1,5

То же

LM335

–40

100

Аналоговый

10

шунт

 

5

±1; ±2

То же

LM35

–55

150

Аналоговый

10

4

30

0,13

±1; ±2

Прецизионный, Uвых, мВ = 10 ·°C

LM45

–20

100

Аналоговый

10

4

10

0,16

±3,5; ±4

То же

LM50

–40

125

Аналоговый

10

4,5

10

0,18

±3; ±4

Однопол, питание, Uвых, мВ = 10 ·°C + 500

LM56

–40

125

Компаратор

6,2

2,7

10

0,23

±3; ±4

Прецизионный термостат с двумя выходами

LM60

–40

125

Аналоговый

6,25

2,7

10

0,12

±3; ±4

Однопол, питание, Uвых, мВ = 6,25 ·°C + 424

LM62

0

90

Аналоговый

15,6

2,7

10

0,16

±2

Однопол, питание, Uвых, мВ = 15,6 ·°C + 480

LM70

–55

150

Цифровой

0,25

2,7

5,5

0,49

±2

10-Bit+знак, Интерфейс SPI/MICROWARE

LM74

–55

150

Цифровой

0,0625

3

5,5

1

±1,25

12-Bit+знак, Интерфейс SPI/MICROWARE

LM75

–55

125

Цифровой

0,5

3

5,5

0,25

±3

10-Bit, Интерфейс I2C, сигнал OverTemper

LM76

–55

150

Цифровой

0,0625

3

5,5

0,5

±1

12-Bit+знак, Интерфейс I2C, сигналы OverTemper и OverWin

LM77

–55

125

Цифровой

0,5

3

5,5

1

±3

То же, 9-Bit+знак

 

Выпускаемые в настоящее время приборы можно условно разделить на две группы.

Первая их них — датчики с аналоговым выходом, величина напряжения на котором пропорциональна измеряемой температуре в градусах Кельвина или Цельсия (в последнем случае для корректного отсчета отрицательной температуры требуется двухполярное питание ИДТ или к выходному напряжению датчика, пропорциональному измеряемой температуре, прибавляется некоторое постоянное число).

Вторая группа — это ИДТ с цифровым выходом, в простейшем варианте это может быть выход одно- или двухпорогового компаратора, переключающегося, когда измеренная величина температуры выходит из области заданных значений.

 

 Датчики такого типа широко используются в различных термостатирующих устройствах. Цифровой выход большинства современных ИДТ выполняется в виде последовательного интерфейса, наиболее распространены двухпроводный I2C и трехпроводные SPI иMICROWARE. Соответствующее программное обеспечение, необходимое для работы таких датчиков, имеется на сайте фирмы.

Мы начнем рассмотрение с прецизионных датчиков температуры в градусах Кельвина с аналоговым выходом LM135, LM235 и LM335. Особенность данных приборов — двухпроводное включение по схеме, аналогичной стабилитрону. Типовое решение для использования ИДТ LM135/235/335 приведено на рис. 2а.

При величине тока через датчик, задаваемой внешним резистором R1 от 0,4 до 5 мА, выходное напряжение с высокой точностью равно 10'°K мВ. При необходимости возможна точная калибровка датчика, для этого используется третий вывод и внешний подстроечный резистор, как показано на рис. 2б.

 

При температуре 25 °С им выставляется выходное напряжение датчика 2,982 В. ИДТ LM135/235/335 выпускаются с обычной и повышенной точностью (LM135А/235А/335А) в герметичных транзисторных корпусах TO-46 (LM135H/235H/335H и LM135AH/235AH/335AH), а LM335 — также в пластмассовом корпусе TO-92 (LM335Z и LM335AZ) и SO-8 для поверхностного монтажа (LM335M). Трехвыводные прецизионные интегральные датчики температуры в градусах Цельсия с аналоговым выходом LM35 и LM45 не требуют калибровки и работают в широком диапазоне питающих напряжений. Типовая схема включения ИДТ LM35 для измерения положительных температур приведена на рис. 3а, а для всего диапазона температур — на рис. 3б.

 

Небольшая величина потребляемого тока (реально 60 мкА) уменьшает погрешность измерений из-за саморазогрева датчика. ИДТ LM35 выпускаются в различных модификациях по диапазону температур: от –55 до +150 °C (LM35, LM35A), от –40 до +110 °C (LM35C, LM35CA) и от 0 до +100 °C (LM35D), точности: 1 °C (LM35A и LM35CA), 2 °C (LM35 LM35C, LM35D) и в четыре типах корпусов: TO-46 (LM35H, LM35AH, LM35CH, LM35CAH и LM35DH), TO-92 (LM35CZ, LM35CAZ и LM35DZ), TO-220 (LM35DT) и SO-8 (LM35DM). Точность датчика LM45B составляет 3 °C, а LM45C — 4 °C в диапазоне температур от –20 до +100 °C. Эти термодатчики выпускаются в корпусе SOT-23.

Аналогичные параметры имеет и интегральный термодатчик LM50, отличительная особенность которого— смещение выходного напряжения на +500 мВ, что дает возможность обойтись однополярным питанием во всем диапазоне измеряемых температур. LM50 выпускается в двух модификациях: LM50B — диапазон измеряемых температур от –25 до +100 °C, точность измерений 3 °C и LM50С — от –40 до +125 °C, 4 °C соответственно.

ИДТ LM60 и LM62 работают при напряжении питания от 2,7 В. Благодаря малому потреблению тока погрешность измерения температуры из-за саморазогрева не превышает 0,2 °C в воздухе. LM60 выпускается в корпусах SOT-23 и TO-92, а LM60 — только SOT-23. Микромощные миниатюрные термодатчики LM20 изготавливаются по технологии КМОП, и, хотя температурная зависимость выходного напряжения для этих приборов имеет небольшую параболическую составляющую, максимальная погрешность измерений во всем диапазоне измеряемых температур от –55 до +130 °C для ИДТ модификации LM20B не превышает ±2,5 °C, а для LM20C — ±5 °C. В отличие от рассмотренных выше датчиков, выполненных по биполярной технологии, у LM20 температурный коэффициент отрицательный.

 

В диапазоне температур от –40 до +85 °C выходное напряжение U описывается линейной функцией температуры и имеет вид U = –11,67 мВ/°C ' T + 1,8583 В с погрешностью не более ±0,65 °C. Для расчетов во всем температурном диапазоне для сохранения минимальной погрешности в коэффициенты следует вносить поправки. Благодаря сверхмалому потреблению тока (максимально 10 мкА), LM20 прекрасно подходят для использования в устройствах с батарейным питанием, отметим также, что саморазогрев термодатчика в воздухе не превышает 0,02 °C. Выпускаются в корпусах SC-70-5 и micro SMD.

Интегральный датчик температуры LM56 предназначен для использования в термостатах. Функциональная схема ИДТ LM56 и графики, поясняющие особенности его функционирования, представлены на рис. 4. Используя внешние резисторы и внутренний источник опорного напряжения 1,250 В, на контактах 3 и 2 задают пороговые напряжения переключения компараторов VT1иVT2, соответствующие заданным температурам Т1 и Т2. В результате на выходе 1 (OUT1 — контакт 7) формируется напряжение низкого уровня, если температура превысит значение Т1, и, соответственно, напряжение высокого уровня, если температура упадет ниже значения Т1 – Тhyst (Тhyst = 5 °C). Аналогично по отношению к температуре Т2 формируется сигнал на выходе 2 (OUT2 — контакт 8). Напряжение на выходе микросхемы VTEMP (контакт 5) пропорционально температуре в градусах Цельсия с коэффициентом 6,2 мВ/°C и смещено на +395 мВ, погрешность измерения температуры во всем диапазоне не превышает 3 °C для модификации LM56BIM и 4 °C для LM56CIM. Типовая схема включения ИДТLM56 и формулы для расчета сопротивления резисторов R1 — R3, задающих величины пороговых температур, приведены на рис. 5.

Отметим, что максимальный ток коллекторов выходных транзисторов составляет всего 50 мкА, что требует подключения к ним достаточно высокоомной нагрузки. LM56 выпускаются в обычных и мини-корпусах SO-8.

Перейдем теперь к рассмотрению интегральных датчиков температуры с цифровым выходом. ИДТ LM70 и LM74 представляют семейство цифровых термодатчиков с последовательным интерфейсом, совместимым с протоколами Motorola SPI и National Semiconductor MICROWARE. Функциональная схема LM70 приведена на рис. 6, LM74 отличается от него 13-битным АЦП. LM70/74 функционируют как ведомые устройства, полный цикл приема-передачи данных занимает 32 такта сигнала SC, из которых первые 16 отводятся передаче данных на контроллер, а вторые — приему. Управление работой датчика производится путем записи данных в конфигурационный регистр, для идентификации ИДТ и считывания результатов измерений служат регистр идентификации и температурный регистр, работающие в режиме чтения.

LM70/74 аппаратно совместимы практически с любыми микроконтроллерами, программирование которых в этом случае не составляет большого труда. Для экономии энергии в интервале между измерениями имеется возможность перевода ИДТ в режим shutdown с током потребления менее 10 мкА, что может быть очень полезно в устройствах с автономным питанием. Существует два варианта микросхем по напряжению питания: LM70/74-3 — 2,65–3,6 В, LM70/74-5 — 4,5–5,5 В. LM70 выпускаются в корпусах с 8 выводами MSOP и LLP, а LM74 SO-8 и 5-выводном microSMD.

Цифровые ИДТ LM75-LM77 имеют последовательный двухпроводный интерфейс по протоколу Philips I2C, а также дополнительные цифровые выходы, изменяющие свое состояние, когда температура превышает заданное значение (OverTemper) или выходит из заданных пределов (OverWin). Последние выполнены с открытым стоком и могут использоваться для построения термостатов, сигнализаторов превышения температуры, а также для работы микроконтроллера по прерыванию. Функциональная схема LM76 приведена на рис. 7. ИДТ функционируют как ведомые устройства, имеется развитая система внутренних регистров для установки режимов работы и параметров выходных сигналов. Для облегчения программирования термодатчиков на сайте фирмы свободно предлагается соответствующее программное обеспечение. В интервале между измерениями имеется возможность перевода ИДТ в режим shutdown с током потребления не более 8 мкА. LM75/6/7 выпускаются в 3- и 5-вольтовой модификации в корпусах с 8 выводами SO и MSOP.

Последнее поколение цифровых ИДТ, разработанных фирмой National Semiconductor, как уже отмечалось выше, кроме измерения локальной (собственной) температуры позволяет подключать удаленные термодатчики, в качестве которых может использоваться диод или транзистор в диодном включении, например 2N3904, а также сенсор, встроенный в микропроцессор. Семейство LM82/83/84/86/88/90/91 (в таблице не показаны) цифровых ИДТ такого типа с последовательным двухпроводным интерфейсом SMBus позволяют подключать от одного до трех удаленных датчиков и обеспечивают точность измерения температуры от 1 до 3 °C в диапазоне от 0 до +125 °C.

Выпускаются в 8-выводных корпусах SO и MSOP (LM86 и LM90) и 16-выводном QSOP. Для корректной работы аппаратных средств современных компьютеров необходим постоянный мониторинг напряжений питания и температуры микропроцессора, и, если эти параметры выходят за предел допустимых значений, функционирование системы следует прекратить. Для контроля температуры многие современные микропроцессоры, в частности, Pentium и др., снабжены расположенным непосредственно на кристалле специальным pn-p транзистором, коллектор которого соединен с подложкой, а база и эмиттер выведены на основной разъем процессора. Измерение температуры и напряжений питания, а также управление вентилятором охлаждения и выдачу в случае необходимости аварийных сигналов и блокировку работы системы производят специализированные контроллеры — системные мониторы (System Hardware Monitors).

Фирма National Semiconductor выпускает семейство системных мониторов LM80/81/85/87 с последовательным двухпроводным интерфейсом SMBus в 24-выводных корпусах TSSOP. В частности, системный монитор LM85 контролирует четыре основные напряжения питания процессора (2,5, 3,3, 5,0 и 12 В), имеет встроенный термодатчик и позволяет подключать два удаленных, сигналы с которых оцифровываются 8-разрядным АЦП, что позволяет измерять температуру в диапазоне от 0 до +125 °C с разрешением 1 °C. В состав монитора входит также система контроля данных от четырех тахометрических датчиков вентиляторов и три формирователя ШИМ-напряжений для управления их работой. Пять цифровых входов VID— сигналов идентификации от процессора — позволяют устанавливать определенные режимы работы монитора для различных ситуаций. Другие системные мониторы семейства имеют ряд дополнительных аналоговых и цифровых входов и выходов— сигналов прерывания, аварийного сброса процессора, вскрытия шасси и др.

В заключение следует отметить, что ИДТ с цифровым интерфейсом, используемые для контроля температуры микропроцессоров и других микросхем, обычно устанавливают прямона материнских платах. Однако, как показывают эксперименты, теплопередача к термосенсору осуществляется в основном не через корпус микросхемы датчика, а через его выводы, поэтому фактически измеряется приповерхностная температура участка материнской платы и печатных проводников, и таким образом может возникнуть систематическая ошибка измерения температуры, которую следует определить и учитывать в каждом конкретном случае.

Поставляемые компоненты











ATmega STM32 ADUM MAX232 GAINTA Светодиодные лампы Источники питания CREE International Rectifier stm8 G5LA RS-232 Драйвер светодиода RS-485 USB ATTINY CORTEX JTAG Плата SENSOR Honeywell Talema Программатор OMRON G2RL Sumida Analog Devices WINSTAR Радиаторы  G6D LUKEY MAXIM MDR STTH EEPROM NXP Индикаторы AVR GEYER IRF IRG4 G2R IGBT GPS GSM G6K MICRA Контактная плата Microchip TDA CTQ DISCOVERY резонатор G5LE ADM485 паяльник RASPBERRY линза ГЕРКОН Осциллограф P10CU RCH TNY TOP ХИМИЯ SMARTPROG2 G6Y металлоискатель WAGO DEGSON DSO QUAD MP-S300B ИОНИСТОР arduino BNC Варистор Прожектор CHRONOS Клавиатура supersilent тумблер соленоид strada chemet RJ-45 c8051 BOURNS G6R 91sam7s G5NB ATMEL ALPR Sunon EPM G5Q sonar G6B MSP430 UDS HIH LPC zl320 AD711 7805 STP JADE II PTC D-SUB MAX44 sim900 uni-s UNI-M Allegro cosmo pic24 ATXmega TMS320 переключатель датчик тока датчик усилия 1N4007 ds18b20 Батарейный отсек шаговый двигатель сервопривод AT89C AT89S AT90PWM AT90CAN AT90USB AT91SAM DRP разрядник bourns Texas Instruments АКЦИЯ XML-2 HE-1202 EPS-15 Детектор газа OSRAM sht 3590s cny arpl lmv mc33 ST-LINK rail-to-rail BEEPROG корпус герметичный hf41f pinguino pickit TFT Bright LED WIELAND STM32VLDISCOVERY TE Connectivity skkt TR91 EPM3 M24LR-DISCOVERY NCR Держатель светодиода SMAJ WG12864 Индикаторный светодиод zl322 TIP Радиатор ADG TLP WG320240 TACT 74LVC RS-15 PIC16 NS25 MOC MMBT MPSA MCDR P6KE STM32F4 TFM CXA2011 MC34 MBRS SMBJ MURS MBRA 78L05 KXO-210 FTDI KBPC IRLR IRFP AT24 P10AU ACS712 SN74HC G5V 78L12 LM358 IRF3205 LM2575 BT137 AD7705 WH1602 78L12 3842 TECAP PIC18 G6Z PC817 STM32F3 MPX MCP6 WH1604 KX-3H FNR CDRH BT134 STW R16110 PIC10 1.5ke zl201 AT45 BTA DEGSON DS13 EmKit STM32F1 XML SMCJ ULN2803 TPIC CNC Driver Лента 5050 RUEF hcpl HEF HFA IDC IRFZ MBR XBDA MCP M-PCB NCP TFF Хлорное железо P6AU ULN2003 NES WH2004 HCF ToyoLED BTB ADM 3296 LM317 PIC12 NS39 MUR L78xx KSDA ISO7 IRLZ IR21xx HopeRF XTEA STM32F0 24C16 KX-K LM324 Стеклотекстолит KX-49 IRLML Энкодер RXEF NTC NE5532 LM1117 MJE LMX Лента светодиодная RFM qss960 POSITIV 20 zl210 STM32F2 E30361 BZV55 G6S BAV99 zl262 CYNEL Мастер Кит zl263 MOSFET Двигатели POLOLU EEMB EPCOS solar sma  ON Semiconductor National Fairchild FreeScale WIZNET Vishay ZETEX AVAGO RGB wdr

^ Наверх

Электронные компоненты для разработки и производства. Харьков, Украина

  Украинский хостинг - UNIX хостинг & ASP хостинг

радиошоп, radioshop, радио, радиодетали, микросхемы, интернет, завод, комплектующие, компоненты, микросхемы жки индикаторы светодиоды семисегментные датчики влажности преобразователи источники питания тиристор симистор драйвер транзистор, диод, книга, приложение, аудио, видео, аппаратура, ремонт, антенны, почта, заказ, магазин, интернет - магазин, товары-почтой, почтовые услуги, товары, почтой, товары почтой, каталог, магазин, Internet shop, база данных, инструменты, компоненты, украина, харьков, фирма Космодром kosmodrom поставщики электронных компонентов дюралайт edison opto светодиодное освещение Интернет-магазин радиодеталей г.Харьков CREE ATMEL ANALOG DEVICES АЦП ЦАП