КОСМОДРОМ - Электронные компоненты для разработки и производства - Харьков - Украина


 


Как купить...     

Склад обновлен: 10 сентября 2019 г

ICQ: 624305018
 

 

EnglishRussianUkrainian

Случайный товар: LAM100X160E1.5 - Стеклотекстолит
Плата:односторонняя, 1,5мм, L:160мм, W:100мм, медь, Толщина медного покрытия - 35 мкм

Перейти в корзину

 

Новое семейство прецизионных источников опорного напряжения REF50xx

 

В статье рассматривается новое семейство прецизионных источников опорного напряжения (ИОН) из производственной линии Burr-Brown REF50xx. Эти ИОН выполнены по архитектуре бэндгап, но по характеристикам начального разброса, температурного дрейфа и шума способны конкурировать с другими лидирующими по уровню прецизионности архитектурами.

Источники опорного напряжения являются важной составной частью любого цифрового оборудования с функцией ввода/вывода аналоговых сигналов. Параметры этого прибора напрямую влияют на уровень рабочих характеристик конечной продукции. Возможностей встроенного в микроконтроллеры ИОН, при работе во всем рабочем диапазоне температур, хватит в лучшем случае на обеспечение 8-битной разрешающей способности. Например, чтобы обеспечить точность работы в 1/2 м.з.р. интегрируемого во многие микроконтроллеры 10-битного АЦП необходимо, чтобы диапазон изменения выходного напряжения ИОН не превышал 1,22 мВ (для ИОН на напряжение 2,5 В). В случае встроенного ИОН, который не предусматривает возможности подстройки выходного напряжения, в этот уровень должно уложиться изменение выходного напряжения, вызванное влиянием как температурного дрейфа, так и начального разброса. Таким образом, при обоснованном подходе к выбору ИОН для применений с 10-битной и более разрешающей способностью преобразования, скорее всего, возникнет потребность в применении внешнего ИОН. К дополнительным преимуществам такого выбора также относятся:

 - возможность выбора ИОН с подходящим к заданным условиям применения выходным напряжением, меньшим уровнем шума, функцией аналоговой подстройки выходного напряжения, другими вспомогательными функциями и пр.;

 - возможность работы не только совместно с АЦП/ЦАП, но и с внешней аналоговой схемой сопряжения;

 - более высокая нагрузочная способность;

 - возможность лучшей изоляции от влияния потребляемого цифровыми ИС тока.

Первый интегральный ИОН был разработан в 1969 году легендарным изобретателем и виртуозом транзисторных схем Робертом Видларом (в то время сотрудником National Semiconductor) в ходе работы над первым однокристальным 20-ваттным линейным стабилизатором напряжения LM109. Позже, в 1971 году, Видлар совместно с еще одним легендарным разработчиком Робертом Добкиным разрабатывают первый монолитный ИОН LM113. Этот ИОН получил название «бэндгап» (или ИОН на разности база-эмиттерных напряжений). Он был двухвыводным прибором и включался в схему по типу стабилитрона. Даже сейчас многие разработчики предпочитают называть ИОН этого типа программируемыми стабилитронами и обозначать их на схеме как стабилитроны, хотя правильнее их называть «ИОН параллельного (или шунтового) типа», что указывает на подключение параллельно нагрузке. Некоторые ИОН этого типа, например, TL431 компании Texas Instruments, выпускаются уже много лет и по-прежнему сохраняют свою популярность. Более совершенный, с точки зрения прецизионности, последовательный тип бэндгап ИОН был предложен Полом Брокау в конце 1970-х и выпускался компанией Analog Devices под наименованием AD580. Он отличался 3-выводным подключением (по типу стабилизатора напряжения), позволял с помощью резистивного делителя напряжения устанавливать требуемое выходное напряжение (с использованием развивающейся в то время технологии лазерной подгонки параметров) и допускал возможность протекания выходного тока в обоих направлениях. Именно этот тип ИОН, ввиду оптимального соотношения «цена - качество» и сравнительной доступности в широком числе исполнений, со временем стал наиболее распространенным и выпускается в настоящее время множеством производителей.

Одним из лидеров в области разработки и производства бэндгап ИОН является компания Texas Instruments (TI). Одна из ее недавних разработок, серия REF50хх, стала настоящим прорывом для ИОН типа бэндгап, т.к. теперь по совокупности рабочих характеристик и степени прецизионности их можно поставить на одну ступеньку с лидирующими на данный момент архитектурами XFET компании Analog Devices и FGA компании Intersil (последняя архитектура была разработана в 2003 году компанией Xicor, год спустя вошедшей в состав Intersil; ее принцип действия идентичен ЭСППЗУ, но для хранения данных не в двоичной форме, а в аналоговой). Убедиться в этом поможет таблица 1, где представлены характеристики представителей семейства REF50xx и лучших ИОН с выходным напряжением 2,5 В, выполненных по технологиям FGA, XFET и стабилитрона со скрытым пробоем.

Смотри также: Источники опорного напряжения

Таблица 1. Основные характеристики ИОН семейства REF50xx и лучших конкурирующих решений

  Семейство REF50xx Сравнение с лучшими 
конкурирующими 
решениями (VOUT = 2,5 В)
 
REF5020 REF5025 REF5030 REF5040 REF5045 REF5050 ISL21009 ADR291 MAX6325  
Архитектура Бэндгап, последовательный тип FGA XFET Стабили-
трон со скрытым пробоем
Выходное напряжение VOUT, В 2,048 2,5 3 4,096 4,5 5 2,5 2,5 2,5
Начальный разброс (25°С), % 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,08 0,04
Макс. ТК, ppm/°C 3 3 3 3 3 3 3 3 1
Макс. ток нагрузки IOUT, мА 10 10 10 10 10 10 7 5 15
Собственный потребляемый ток IQ, не более, мкА 1000 1000 1000 1000 1000 1000 180 12 3000
Входное напряжение VIN, В 2,7...18 2,7...18 3,2...18 4,296...18 4,7...18 5,2...18 3,5...16,5 2,8...15 8...36
Размах напряжения шума eN (0,1...10 Гц), мкВ 6 7,5 9 12 13,5 15 4,5 8 1,5
Корпус 8-SOIC 8-SOIC, 8-TSSOP 8-DIP/SOIC
Рабочий температурный диапазон, °C -40 ...125 -40...85

Знакомство с семейством REF50xx

Как следует из таблицы 1, семейство REF50xx состоит из шести ИОН, различающихся уровнем выходного напряжения. Кроме того, каждый из этих ИОН доступен в двух исполнениях: повышенной точности (характеристики представлены в таблице 1) и стандартном. Точностные характеристики стандартного исполнения примерно в два раза хуже, чем у исполнения повышенной точности.

Все виды и исполнения ИОН доступны в 8-выводных корпусах двух типов: SO и MSOP. Расположение выводов представлено на рисунке 1а.

 

Расположение выводов и упрощенная структурная схема ИОН REF50xx

 

Рис. 1. Расположение выводов и упрощенная структурная схема ИОН REF50xx

Здесь же, на рисунке 1б, показана упрощенная структурная схема ИОН REF50xx.

Основой ИОН REF50xx является элемент бэндгап на напряжение 1,2 В. Это напряжение затем буферизуется и масштабируется до требуемого выходного уровня с помощью неивертирующего усилительного каскада, выполненного на основе прецизионного операционного усилителя (ОУ). Предусмотрена возможность влияния на коэффициент передачи этого усилительного каскада через вывод TRIM. Подключение потенциометра к этому выводу позволяет корректировать выходное напряжение в пределах ±15 мВ. Еще одной дополнительной возможностью REF50xx является возможность контроля температуры кристалла через вывод TEMP. Напряжение на этом выводе зависит от температуры (выражение этой зависимости показано на рисунке 1б). Важно обратить внимание на то, что функция контроля температуры больше подходит для контроля изменений температуры, чем ее абсолютного значения, т.к. погрешность измерения достаточно велика и составляет приблизительно ±15°С [1, стр. 10]. Тем не менее, данная функция вполне применима в схемах температурной компенсации аналоговых каскадов. Выход TEMP является высокоомным, поэтому при работе со сравнительно низкоомными нагрузками потребуется его буферизация с помощью ОУ, обладающего малым температурным дрейфом. Производитель рекомендует использовать для этих целей ОУ OPA333, OPA335 или OPA376.

Обзор рабочих характеристик

Начальный разброс

Величина начального разброса демонстрирует, насколько может отклониться выходное напряжение ИОН относительно номинального значения сразу после подачи питания и при комнатной температуре (25°С). Как уже упоминалось, ИОН REF50xx выпускаются в двух исполнениях с начальным разбросом 0,05% (50 ppm) и 0,1% (100 ppm). Таким образом, начальный разброс даже стандартных исполнений отвечает требованиям систем с разрешающей способностью не меньше 12 бит и погрешностью преобразования 1 м.з.р. (для диапазона преобразования 2,5 В этим условиям эквивалентна разрешающая способность 610 мкВ, а у ИОН 2,5 В ±0,01% выходное напряжение отклоняется на величину не более 250 мВ). Если же задействовать возможность подстройки выходного напряжения, то, без учета прочих ограничений (температурный дрейф, шум), разрешающая способность может быть расширена до 16 бит.

Температурный дрейф (температурный коэффициент, ТК)

Данная характеристика показывает, насколько изменится выходное напряжение при изменениях температуры. ИОН REF50xx характеризуются очень малым ТК, который составляет 3 ppm/°C у исполнений повышенной точности и 8 ppm/°C у стандартных исполнений. Значение ТК 8 ppm/°C для ИОН напряжением 2,5 В означает, что при работе в температурном диапазоне шириной 100°С (например, -25...75°С) выходное напряжение ИОН будет изменяться на величину 2,0 мВ. Из этого следует, что ТК рассматриваемых ИОН вполне достаточно для обеспечения 10-битной разрешающей способности в широком диапазоне температур с погрешностью преобразования 1/2 м.з.р., а добиться более высокого разрешения можно только в более узком диапазоне температур. Для 16-битной системы с погрешностью преобразования 1/2 м.з.р. допускается относительное изменение напряжения всего лишь на 7,6 ppm (0,00076%). Таким образом, ИОН REF50xx смогут добиться такой точности лишь в полностью статических температурных условиях (отклонение не более 1...2°С). В 14-битной системе при прочих равных условиях REF50xx уже смогут обеспечить требуемую точность при колебаниях температуры до 10°С, в 12-битной - 40°С, в 10-битной - 160°С.

Шум

Выходное напряжение любого ИОН имеет шумовую составляющую. Шум, особенно низкочастотный, может затруднить измерение напряжения с высокой разрешающей способностью и/или с высоким быстродействием. Типичные значения размаха напряжения шума в диапазоне частот 0,1...10 Гц приведены в таблице 1 (распространяются и на стандартные исполнения). Данные значения вполне адекватны требованиям систем с разрешающей способностью до 14 бит включительно и погрешностью преобразования 1/2 м.з.р.

Нестабильность по входу и нагрузке

Данные характеристики позволяют оценить, насколько изменится выходное напряжение при колебаниях входного напряжения и тока нагрузки. Нестабильность по входу у всех ИОН REF50xx составляет не более 1 ppm/В, а по нагрузке - 50 ppm/мА (во всем рабочем диапазоне температур). Нестабильность по нагрузке можно также трактовать как выходное сопротивление ИОН, т.е. 50 ppm/мА означает, что выходное сопротивление ИОН на напряжение 2,5 В равно 2,5 × 50 =125 мОм.

Максимальный выходной ток

Несмотря на то, что ИОН REF50xx допускают протекание на выходе как втекающего, так и вытекающего тока величиной до 10 мА, желательно не использовать ИОН на пределе его возможностей. При работе с токами, близкими к предельным, не исключены самонагрев кристалла ИОН и возникновение вдоль микросхемы тепловых градиентов, негативно влияющих на точность и стабильность системы. Также важно заметить, что ИОН REF50xx оснащены защитой выхода от короткого замыкания с линиями питания (ток к.з. ограничивается на уровне 25 мА), что делает их более надежными приборами.

Диапазон напряжения питания

ИОН REF50xx рассчитаны на работу в достаточно широком диапазоне напряжения питания: от 2,7 В у самых низковольтных приборов до 18 В. Однако эти характеристики не следует трактовать как возможность работы от нестабилизированного напряжения, т.к. чтобы добиться прецизионных характеристик, ИОН лучше питать с выхода линейного стабилизатора напряжения, который примет на себя решение многих проблем, связанных с фильтрацией шума, подавлением переходных процессов на входе питания и др. Нижняя граница диапазона напряжения питания определяется еще одной характеристикой - минимально-допустимым перепадом напряжения. Его величина зависит от тока нагрузки и температуры, и при наихудших условиях (10 мА, 125°С) составляет чуть более 700 мВ. Если, исходя из озвученных выше рекомендаций, обеспечить работу с током, вдвое меньшим относительно максимального (т.е. 5 мА), то величина минимального перепада напряжения будет лежать в пределах 0,3...0,4 В в диапазоне температур 25...125°С, соответственно.

Потребляемый ток

ИОН REF50xx характеризуются достаточно большим потребляемым током, если сравнивать с конкурирующими технологиями FGA и XFET, что видно из таблицы 1. Столь высокое потребление свойственно другой прецизионной архитектуре: ИОН на стабилитроне со скрытым пробоем. Таким образом, применение REF50xx ограничено в приложениях с батарейным питанием, где требуется непрерывная работа ИОН. Однако и в приложениях с периодической работой ИОН существует еще одно ограничение - время установления после подачи питания. У REF50xx оно достаточно большое: при работе с нагрузочным конденсатором 1 мкФ типичное значение времени установления равно 200 мкс. Таким образом, эти ИОН больше подходят для работы в составе стационарной прецизионной аппаратуры, для которой более низкая себестоимость продукции более важна, чем характеристики энергопотребления.

Типичные применения и схемы включения

Как уже упоминалось, ввиду достаточно большого энергопотребления, но и сравнительно небольшой стоимости, ИОН семейства REF50xx идеальны для работы в составе высокоточного стационарного оборудования с разрешающей способностью преобразования до 16 бит, в т.ч.:

 - системы сбора данных;

 - автоматизированное испытательное оборудование;

 - устройства промышленной автоматики;

 - медицинское оборудование;

 - прецизионные контрольно-измерительные приборы.

Базовая схема включения, которая не предусматривает использование функций контроля температуры и подстройки выходного напряжения, показана на рисунке 2а. В этой конфигурации ИОН дополняется снаружи всего лишь двумя компонентами: блокировочный конденсатор на входе емкостью 1...10 мкФ и нагрузочный конденсатор на выходе емкостью 1...50 мкФ. Нагрузочный конденсатор должен относиться к типу «low ESR», т.е. обладать малым эквивалентным последовательным сопротивлением. При необходимости подстройки выходного напряжения, эту схему необходимо дополнить схемой на рисунке 2б. Важно понимать, что использование недорогого резистора типа «сermet» в качестве подстроечного может привести к ухудшению ТК ИОН, т.к. ТКС этого резистора превышает 100 ppm. Более предпочтительно использовать прецизионные проволочные или металло-фольговые типы подстроечных резисторов с 5%-ым допуском на сопротивление и ТКС менее 50 ppm.

 

Схемы включения REF50x: базовая (а), с подстройкой выходного напряжения (б)

 

Рис. 2. Схемы включения REF50x: базовая (а), с подстройкой выходного напряжения (б)
и в составе 16-битной системы сбора данных: с однополярным (в) и двуполярным (г) входом

На рисунке 2 в можно увидеть пример построения входного каскада одноканальной 16-битной системы сбора данных с входным диапазоном 0...4 В [1, стр. 11]. Здесь входной сигнал буферизуется прецизионным ОУ OPA365, включенным по схеме неинвертирующего усилителя-повторителя. Далее сигнал фильтруется RC-цепью и поступает на вход 16-битного АЦП ADS8326. Измерительный диапазон задается ИОН REF5040 на напряжение 4,0 В. Благодаря поддержке ОУ полного размаха напряжения на входе и выходе (тип rail-to-rail) и малому минимальному перепаду напряжения ИОН, схема способна работать от 5-вольтового источника питания.

Еще один пример, но уже для преобразования двуполярного сигнала в диапазоне ±10 В, показан на рисунке 2г. Схема отличается применением во входном каскаде инструментального усилителя INA159,который выполняет преобразование двуполярного диапазона ±10 В в однополярный 0...4 В. В качестве АЦП используется 16-битный АЦП с однополярным входом и частотой преобразования до 1 МГцADS8330.

Выводы

Несмотря на то, что ИОН семейства REF50хх выполнены по архитектуре бэндгап, они обладают столь высокой прецизионностью, что их можно поставить в один ряд с такими лидирующими архитектурами, как стабилитрон со скрытым пробоем, XFET и FGA.

В семейство входят шесть ИОН на различные выходные напряжения в диапазоне от 2,048 до 5 В. Кроме того, каждый из этих ИОН доступен в двух исполнениях: стандартном и повышенной точности. Все ИОН поддерживают возможность подстройки выходного напряжения и контроля температуры.

Существенными недостатками ИОН являются их высокое энергопотребление (1 мА) и большое время установления после подачи питания (200 мкс), что ограничивает возможность их применения в критичных к уровню энергопотребления системах. Производитель указывает на возможность применения ИОН в системах с разрешающей способностью до 16 бит включительно.

 

Поставляемые компоненты











ATmega STM32 ADUM MAX232 GAINTA Светодиодные лампы Источники питания CREE International Rectifier stm8 G5LA RS-232 Драйвер светодиода RS-485 USB ATTINY CORTEX JTAG Плата SENSOR Honeywell Talema Программатор OMRON G2RL Sumida Analog Devices WINSTAR Радиаторы  G6D LUKEY MAXIM MDR STTH EEPROM NXP Индикаторы AVR GEYER IRF IRG4 G2R IGBT GPS GSM G6K MICRA Контактная плата Microchip TDA CTQ DISCOVERY резонатор G5LE ADM485 паяльник RASPBERRY линза ГЕРКОН Осциллограф P10CU RCH TNY TOP ХИМИЯ SMARTPROG2 G6Y металлоискатель WAGO DEGSON DSO QUAD MP-S300B ИОНИСТОР arduino BNC Варистор Прожектор CHRONOS Клавиатура supersilent тумблер соленоид strada chemet RJ-45 c8051 BOURNS G6R 91sam7s G5NB ATMEL ALPR Sunon EPM G5Q sonar G6B MSP430 UDS HIH LPC zl320 AD711 7805 STP JADE II PTC D-SUB MAX44 sim900 uni-s UNI-M Allegro cosmo pic24 ATXmega TMS320 переключатель датчик тока датчик усилия 1N4007 ds18b20 Батарейный отсек шаговый двигатель сервопривод AT89C AT89S AT90PWM AT90CAN AT90USB AT91SAM DRP разрядник bourns Texas Instruments АКЦИЯ XML-2 HE-1202 EPS-15 Детектор газа OSRAM sht 3590s cny arpl lmv mc33 ST-LINK rail-to-rail BEEPROG корпус герметичный hf41f pinguino pickit TFT Bright LED WIELAND STM32VLDISCOVERY TE Connectivity skkt TR91 EPM3 M24LR-DISCOVERY NCR Держатель светодиода SMAJ WG12864 Индикаторный светодиод zl322 TIP Радиатор ADG TLP WG320240 TACT 74LVC RS-15 PIC16 NS25 MOC MMBT MPSA MCDR P6KE STM32F4 TFM CXA2011 MC34 MBRS SMBJ MURS MBRA 78L05 KXO-210 FTDI KBPC IRLR IRFP AT24 P10AU ACS712 SN74HC G5V 78L12 LM358 IRF3205 LM2575 BT137 AD7705 WH1602 78L12 3842 TECAP PIC18 G6Z PC817 STM32F3 MPX MCP6 WH1604 KX-3H FNR CDRH BT134 STW R16110 PIC10 1.5ke zl201 AT45 BTA DEGSON DS13 EmKit STM32F1 XML SMCJ ULN2803 TPIC CNC Driver Лента 5050 RUEF hcpl HEF HFA IDC IRFZ MBR XBDA MCP M-PCB NCP TFF Хлорное железо P6AU ULN2003 NES WH2004 HCF ToyoLED BTB ADM 3296 LM317 PIC12 NS39 MUR L78xx KSDA ISO7 IRLZ IR21xx HopeRF XTEA STM32F0 24C16 KX-K LM324 Стеклотекстолит KX-49 IRLML Энкодер RXEF NTC NE5532 LM1117 MJE LMX Лента светодиодная RFM qss960 POSITIV 20 zl210 STM32F2 E30361 BZV55 G6S BAV99 zl262 CYNEL Мастер Кит zl263 MOSFET Двигатели POLOLU EEMB EPCOS solar sma  ON Semiconductor National Fairchild FreeScale WIZNET Vishay ZETEX AVAGO RGB wdr

^ Наверх

Электронные компоненты для разработки и производства. Харьков, Украина

  Украинский хостинг - UNIX хостинг & ASP хостинг

радиошоп, radioshop, радио, радиодетали, микросхемы, интернет, завод, комплектующие, компоненты, микросхемы жки индикаторы светодиоды семисегментные датчики влажности преобразователи источники питания тиристор симистор драйвер транзистор, диод, книга, приложение, аудио, видео, аппаратура, ремонт, антенны, почта, заказ, магазин, интернет - магазин, товары-почтой, почтовые услуги, товары, почтой, товары почтой, каталог, магазин, Internet shop, база данных, инструменты, компоненты, украина, харьков, фирма Космодром kosmodrom поставщики электронных компонентов дюралайт edison opto светодиодное освещение Интернет-магазин радиодеталей г.Харьков CREE ATMEL ANALOG DEVICES АЦП ЦАП