КОСМОДРОМ - Электронные компоненты для разработки и производства - Харьков - Украина


 


Как купить...     

Склад обновлен: 19 августа 2019 г

ICQ: 624305018
 

 

EnglishRussianUkrainian

Случайный товар: TLV3701IDBVT - Микросхема
Компаратор - [SOT-23-5]: Каналов: 1: Выход: Push-Pull, Rail-to-Rail: Совместимость: CMOS: Uпит: 2.7...16 В: Iпотр: 800 нА: Задержка: 36 мкс

Перейти в корзину

Уважаемые покупатели.
Поздравляем всех вас с наступающими праздниками:
Харьковчан - с Днем города Харькова 23 августа, и всех - с  Днем Независимости Украины - 24 августа. Желаем всем крепкого здоровья и хорошего настроения в праздничные дни.

Обратите внимание, что у нас 24, 25, 26 августа - ВЫХОДНЫЕ дни. Далее работаем по графику

 

 

International Rectifier Corporation
Общепризнанный мировой лидер в разработке и производстве силовых полупроводниковых компонентов

Полное наименование: International Rectifier Corporation
Веб сайт: www.irf.com
Перечень поставляемой продукции

 

В конце 2011 года компания International Rectifier выпустила на мировой рынок новую линейку надежных и эффективных IGBT 1200 В, предназначенных для широкого круга приложений: индукционных нагревателей, сварочных аппаратов, высокомощных выпрямителей, бесперебойных источников питания, солнечных батарей и других.

Сверхбыстрые 1200V IGBT 7-го поколения от International Rectifier

В конце 2011 года компания International Rectifier выпустила на мировой рынок новую линейку надежных и эффективных IGBT 1200 В, предназначенных для широкого круга приложений: индукционных нагревателей, сварочных аппаратов, высокомощных выпрямителей, бесперебойных источников питания, солнечных батарей и других.

При производстве данных IGBT используется Field-Stop Trench (FS Trench) технология, которая позволяет добиться значительного уменьшения потерь на переключение и проводимость и тем самым получить более высокую плотность мощности и более высокий КПД при работе на высоких частотах. Новая линейка дополняет уже существующую линейку IGBT cо стойкостью к воздействию короткого замыкания 10 мкс.

Помимо вышеперечисленных преимуществ, применение новых IGBT позволяет уменьшить размеры радиатора, число внешних компонентов, а также конечную стоимость разрабатываемого изделия. Диапазон токов у новой линейки IGBT для корпусированных приборов составляет 20-50 А для кристаллов до 150 А. Основными преимуществами новых IGBT являются: большая квадратная область безопасной работы (RBSOA), положительный температурный коэффициент, низкое значение Vce(on) для уменьшения рассеиваемой мощности и получения высокой плотности мощности.

В новой линейке транзисторы IRG7PH35UD1 и IRG7PH42UD1 обладают устойчивостью к повторяющимся пиковым броскам напряжения до 1300 В.

Доступны IGBT как со встроенным диодом с малым временем обратного восстановления, так и без него. Кристаллы также доступны с паяемым металлическим покрытием на передней стороне (покрытие позволяет корпусирование без использования проволочных соединений) для улучшения тепловых характеристик (возможность двустороннего охлаждения), повышения надежности и эффективности.

Наименование   Корпус BV (В) Iном. (А) Vce(on) (В) Rth(j-c) °С/Вт

IRG7PH35UPBF

TO-247 1200 20 1.9 0.70

IRG7PH35UDPBF

IRG7PH35UD1PBF

IRG7PH35UD1-EP

IRG7PH42UPBF

30 1.7 0.39

IRG7PH42UDPBF

IRG7PH42UD1PBF

IRG7PH42UD1-EP

IRG7PH46UPBF

40 1.7 0.32

IRG7PH46UDPBF

IRG7PH50UPBF

50 1.7 0.27

Основной вопрос, который возникает у разработчиков, не применявших ранее IGBT - в каком случае применять их, а где стоит использовать классические MOSFET. Для того, чтобы разобраться в этом вопросе, необходимо провести аналогию между параметрами IGBT и MOSFET. Итак, рассмотрим основные параметры транзисторов, их функциональное соответствие и типичные значения.

VECS (Collector-to-Emitter Breakdown Voltage) - максимально-допустимое напряжение «коллектор-эмиттер». Является аналогом параметра VDS MOSFET-транзисторов. Значение этого параметра для IGBT находится в пределах 300...1500 В.

IC (Continuous Collector Current) - максимальный ток коллектора, аналог тока стока ID. Диапазон значений для IGBT - 10...200 А.

VGE (Gate-to-Emitter Voltage) - максимально допустимое напряжение «затвор-эмиттер», аналог параметра VGS. Значения VGE находятся в пределах ±20... ±30 В.

VCE(on) (Collector-to-Emitter Saturation Voltage) - напряжение насыщения «коллектор-эмиттер», определяет потери проводимости в транзисторе, аналог Rds(on) для MOSFET. Диапазон значений VCE(on) 1,0...2,5 В.

Ets (Total Switching Loss) - полные потери на переключения транзистора (измеряется в мкДж). Аналогом у MOSFET является заряд затвора Qg.

Pd (Maximum Power Dissipation) - максимально возможная рассеиваемая мощность. Как и в случае MOSFET-транзисторов, значение данного параметра в значительной степени определяется типом корпуса транзистора.

Особенностью IGBT-транзисторов является снижение значений параметра, являющегося эквивалентом сопротивления канала MOSFET с увеличением тока, протекающего в IGBT-транзисторе. Воспользуемся конкретным примером сравнения двух различных MOSFET с IGBT, наглядно проиллюстрированном на рис. 1.

 

Сравнение IGBT и MOSFET для различных рабочих токов

 

Рис. 1. Сравнение IGBT и MOSFET для различных рабочих токов

Из графика видно, что при токах свыше 33 А значение эквивалента Rds(on) становится ниже реальных значений Rds(on) для MOSFET с напряжением 150 В, что позволяет получить дополнительную эффективность при использовании IGBT. В случае использования MOSFET с напряжением 200 В при любых токах потери в IGBT-транзисторе значительно ниже.

Однако наравне с выделенными выше преимуществами IGBT-транзисторы проигрывают MOSFET по быстродействию. В отличие от MOSFET, способных работать на частотах в несколько мегагерц, пределом IGBT является порог в 30...40 кГц с существенным ухудшением токовой характеристики на частотах более 20 МГц. Данный факт иллюстрирует рисунок 2.

 

Сравнение рабочих токов IGBT и MOSFET на различных частотах

 

Рис. 2. Сравнение рабочих токов IGBT и MOSFET на различных частотах

 

Классификация IGBT компании IR  

В зависимости от применяемой технологии изготовления все IGBT-транзисторы компании IR можно разделить на четыре поколения - G4...G7, топология которых приведена на рисунке 3.

 

Топология различных поколений IGBT

 

Рис. 3. Топология различных поколений IGBT

Применение различных технологий производства позволяет добиться требуемого соотношения основных параметров транзисторов, что определяет их области применения. Как видно на рисунке, наряду с улучшенными характеристиками новые поколения транзисторов обладают и большей стоимостью. Это связано с увеличением общего числа слоев в структуре транзистора, а также усложнением технологических процессов их создания.

Качественную оценку основных характеристик транзисторов на напряжение 1200 В можно сделать, исходя из рис. 4.

 

VCE(on) vs. Ets для различных поколений транзисторов

 

Рис. 4. VCE(on) vs. Ets для различных поколений транзисторов

Из рисунка видно, что переход от поколения G4, изготавливаемого по punch-through (PT) технологии, к G5, изготавливаемому по non-punch-through (NPT) технологии, сопровождается девятикратным уменьшением потерь на переключение (параметр Ets) и увеличением потерь на проводимость в 1,5 раза. Таким образом, поколение G5 больше подходит для применения в схемах с более высокими рабочими частотами, чем G4.

Переход к новым технологиям FS Trench (G6) и Epi-Trench (G7), позволил создать IGBT, которые совмещают в себе достоинства предыдущих поколений и обладают низкими значениями Ets без увеличения потерь проводимости. Кроме того, падение рабочего тока транзистора с увеличением частоты у нового поколения G7 выражено не так ярко, как у транзисторов предыдущих поколений или у IGBT-транзисторов других производителей. Эти выводы можно сделать из рисунка 5, на котором приведена зависимость тока от частоты переключения для различных семейств транзисторов.

 

VCE(on) vs. Ets для различных поколений транзисторов

 

Рис. 5. VCE(on) vs. Ets для различных поколений транзисторов

Представленные поколения широко представлены на рынке электронных компонентов и перекрывают практически все области применения IGBT (см. таблицу 1).

Таблица 1. IGBT разных технологий  

 

PT

NPT

FS Trench

Epi Trench

S

F

U

W

K

U

W

K

K

U

S

F

U

Приборостроение

 

X

X

 

X

X

 

X

 

X

 

X

X

Пром. Двигатели

 

 

 

 

X

 

 

X

X

 

 

 

 

ККМ

 

 

 

X

 

X

X

 

 

X

 

 

 

ИБП

X

 

X

X

 

X

X

 

 

X

X

 

X

Солнечные батареи

X

 

X

X

 

X

X

 

 

X

X

 

X

Сварка

X

 

X

 

 

X

 

 

 

X

X

 

X

Индукционный нагрев

 

 

X

 

 

 

 

 

 

X

 

 

X

Интерфейсы

X

 

 

 

 

 

 

 

 

 

X

 

 

Источники питания

 

 

X

X

 

X

X

 

 

X

 

 

X

* красным цветом выделены изделия, находящиеся в разработке.

Строка, расположенная ниже обозначения технологий изготовления транзисторов, определяет тип транзистора с точки зрения его частотных характеристик. Максимальные рабочие частоты, а также значения параметров VCE(on) и Ets для каждой группы можно найти в таблице 2.

Таблица 2. Частотные характеристики IGBT  

Название группы

Литера

Fsw, кГц

Vce(on), В

Ets, мДж

Стандарт (Standart)

S

<1

1,2

6,95

Быстрые (Fast)

F

1...8

1,4

2,96

Ультрабыстрые (Ultrafast)

U

8...30

1,7

1,1

Сверхбыстрые (Warp)

W

>30

2,05

0,34

Литера «К» в таблице 1 обозначает не скоростную группу транзистора, а служит отметкой о способности транзистора сохранять работоспособность в условиях короткого замыкания (Sort Circuit Safe Operation Area - SCSOA). Данный термин введен компанией IR для транзисторов, которые имеют дополнительную защиту против короткого замыкания. Данное свойство является крайне полезным при работе транзисторов на удаленную индуктивную нагрузку (двигатель). В этих условиях длинные линии подвержены сильным внешним помехам и случайным механическим повреждениям, которые могут привести к короткому замыканию выводов транзистора.

IR предлагает три степени защиты IGBT от короткого замыкания, которые определяются допустимой длительностью состояния КЗ (10 мкс, 6 мкс, 3 мкс), при котором, транзистор сохраняет работоспособность после устранения условий КЗ. Наличие подобной защиты приводит к незначительному (0,1...0,2 В) увеличению параметра VCE(on).

 

Поставляемые компоненты











ATmega STM32 ADUM MAX232 GAINTA Светодиодные лампы Источники питания CREE International Rectifier stm8 G5LA RS-232 Драйвер светодиода RS-485 USB ATTINY CORTEX JTAG Плата SENSOR Honeywell Talema Программатор OMRON G2RL Sumida Analog Devices WINSTAR Радиаторы  G6D LUKEY MAXIM MDR STTH EEPROM NXP Индикаторы AVR GEYER IRF IRG4 G2R IGBT GPS GSM G6K MICRA Контактная плата Microchip TDA CTQ DISCOVERY резонатор G5LE ADM485 паяльник RASPBERRY линза ГЕРКОН Осциллограф P10CU RCH TNY TOP ХИМИЯ SMARTPROG2 G6Y металлоискатель WAGO DEGSON DSO QUAD MP-S300B ИОНИСТОР arduino BNC Варистор Прожектор CHRONOS Клавиатура supersilent тумблер соленоид strada chemet RJ-45 c8051 BOURNS G6R 91sam7s G5NB ATMEL ALPR Sunon EPM G5Q sonar G6B MSP430 UDS HIH LPC zl320 AD711 7805 STP JADE II PTC D-SUB MAX44 sim900 uni-s UNI-M Allegro cosmo pic24 ATXmega TMS320 переключатель датчик тока датчик усилия 1N4007 ds18b20 Батарейный отсек шаговый двигатель сервопривод AT89C AT89S AT90PWM AT90CAN AT90USB AT91SAM DRP разрядник bourns Texas Instruments АКЦИЯ XML-2 HE-1202 EPS-15 Детектор газа OSRAM sht 3590s cny arpl lmv mc33 ST-LINK rail-to-rail BEEPROG корпус герметичный hf41f pinguino pickit TFT Bright LED WIELAND STM32VLDISCOVERY TE Connectivity skkt TR91 EPM3 M24LR-DISCOVERY NCR Держатель светодиода SMAJ WG12864 Индикаторный светодиод zl322 TIP Радиатор ADG TLP WG320240 TACT 74LVC RS-15 PIC16 NS25 MOC MMBT MPSA MCDR P6KE STM32F4 TFM CXA2011 MC34 MBRS SMBJ MURS MBRA 78L05 KXO-210 FTDI KBPC IRLR IRFP AT24 P10AU ACS712 SN74HC G5V 78L12 LM358 IRF3205 LM2575 BT137 AD7705 WH1602 78L12 3842 TECAP PIC18 G6Z PC817 STM32F3 MPX MCP6 WH1604 KX-3H FNR CDRH BT134 STW R16110 PIC10 1.5ke zl201 AT45 BTA DEGSON DS13 EmKit STM32F1 XML SMCJ ULN2803 TPIC CNC Driver Лента 5050 RUEF hcpl HEF HFA IDC IRFZ MBR XBDA MCP M-PCB NCP TFF Хлорное железо P6AU ULN2003 NES WH2004 HCF ToyoLED BTB ADM 3296 LM317 PIC12 NS39 MUR L78xx KSDA ISO7 IRLZ IR21xx HopeRF XTEA STM32F0 24C16 KX-K LM324 Стеклотекстолит KX-49 IRLML Энкодер RXEF NTC NE5532 LM1117 MJE LMX Лента светодиодная RFM qss960 POSITIV 20 zl210 STM32F2 E30361 BZV55 G6S BAV99 zl262 CYNEL Мастер Кит zl263 MOSFET Двигатели POLOLU EEMB EPCOS solar sma  ON Semiconductor National Fairchild FreeScale WIZNET Vishay ZETEX AVAGO RGB wdr

^ Наверх

Электронные компоненты для разработки и производства. Харьков, Украина

  Украинский хостинг - UNIX хостинг & ASP хостинг

радиошоп, radioshop, радио, радиодетали, микросхемы, интернет, завод, комплектующие, компоненты, микросхемы жки индикаторы светодиоды семисегментные датчики влажности преобразователи источники питания тиристор симистор драйвер транзистор, диод, книга, приложение, аудио, видео, аппаратура, ремонт, антенны, почта, заказ, магазин, интернет - магазин, товары-почтой, почтовые услуги, товары, почтой, товары почтой, каталог, магазин, Internet shop, база данных, инструменты, компоненты, украина, харьков, фирма Космодром kosmodrom поставщики электронных компонентов дюралайт edison opto светодиодное освещение Интернет-магазин радиодеталей г.Харьков CREE ATMEL ANALOG DEVICES АЦП ЦАП