
SPWF01SA SPWF01SC

TBD

Datasheet - preliminary data

SPWF01SA

SPWF01SC

- Multiple antenna options available: integrated antenna or integrated u.FL connector
- Industrial operating temperature range
- FCC/CE/IC certified
- RoHS compliant
- · Surface mount PCB module

Applications

- Smart appliances
- Industrial control and data acquisition
- Home automation & home energy
- Home security systems
- Wireless sensors
- Cable replacement
- Medical equipments

Features

- Integrated 2.4 GHz IEEE 802.11 b/g/n transceiver
- Integrated STM32 ARM Cortex-M3
- Integrated 1.5 MB flash memory
- Integrated 64 KB RAM memory
- Integrated 32kHz XTAL to support low power modes
- 16 GPIOs, JTAG and serial port (UART, SPI, I2C) interfaces available
- Small form factor: 26.92 x 15.24 x 2.35 mm
- Up to +18 dBm output power
- Single voltage supply (3.3 V typ)

Description

The SPWF01SA and the SPWF01SC intelligent Wi-Fi modules represent a plug and play and standalone 802.11 b/g/n solution for an easy integration of wireless Internet connectivity features into existing or new products.

Configured around a single-chip 802.11 transceiver with integrated PA and an STM32 32-bit microcontroller with extensive GPIO suite, the modules also incorporate timing clocks and voltage regulators.

The module is available either configured with an embedded micro 2.45 GHz ISM band antenna (SPWF01SA), or with an u.FL connector for external antenna connection (SPWF01SC).

With low power consumption and small form factor, the modules are ideal for fixed and mobile wireless applications, as well as challenging battery operated applications.

The SPWF01SA.11 and SPWF01SC.11 orderable parts are released with an integrated full featured TCP/IP protocol stack with added web server and additional application services capabilities. The SW package also includes an AT command layer interface for a friendly access to the stack functionalities via the UART serial port.

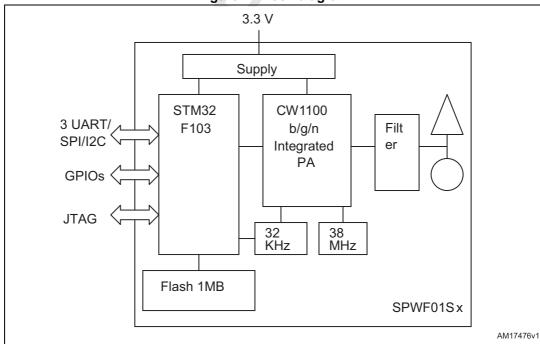


Figure 1. Block diagram

1 General electrical specifications

1.1 Typical results are at room temperature only

Table 1. Absolute maximum ratings

Parameter	Test condition/comment	Min.	Тур.	Max.	Unit
3.3 V supply		-0.3		4.0	V
Vin for 5V tolerant pins		-0.3		5.5	V
Vin for all other pins		-0.3		2.8	V

Table 2. Operating conditions and input power specifications

Parameter		Test condition/comment	Min.	Тур.	Max.	Unit
Operating temperature range		Industrial	-40		85	°C
Input supply voltage		3.3V Supply input	3.1	3.3	3.6	V
Power s current	Power save mode current	100mS beacon period, 75 byte beacons @ 1Mbps, short Preamble, DTIM = 3		20		mA
3.3 V	Sleep current	3.3V 25°C, no data retention, wakeup on events		200		μΑ
supply		DTIM 1, All beacons Received, no active data (average value)		900		μΑ
	TX current	Peak, transmitting packets, 3.3V, 25°C		330		mA
	RX current	Peak, Receiving packets 3.3V, 25°C		125		mA

2 Digital interface specifications

Table 3. Digital Interface Specifications, I/O pins

Parameter		Test condition/comment	Min.	Тур.	Max.	Unit
lanuta	VIH		1.4			V
Inputs	VIL		0.6			V
Outputs	VOH	IOH=4mA	1.8			V
	VOL	IOL=4mA			0.4	V
Programmable			80		120	kΩ
Pull up or down resistor						

3 RF characteristics

Table 4.

Parameter		Test condition/comment	Min.	Тур.	Max.	Unit
	11b, 1 Mbps			-96		dBm
	11b, 2 Mbps			-93		dBm
	11b, 5.5 Mbps			-91		dBm
	11b, 11 Mbps			-87		dBm
	11g, 9 Mbps			-89.5		dBm
	11g, 18 Mbps			-86		dBm
RX Sensitivity ⁽¹⁾	11g, 36 Mbps			-80		dBm
	11g, 54 Mbps			-74.5		dBm
	11n, MCS1, 13 Mbps			-86.5		dBm
	11n, MCS3, 26 Mbps			-81.5		dBm
	11n, MCS5, 52 Mbps			-74		dBm
	11n, MCS7, 65 Mbps			-71		dBm
Channel to channel desensitivity	CH1 to 14	11g, 54 Mbps, 10%PER		1		dB
Maximum input signal	CH7	11g, 54 Mbps		-20		dBm
	11Mbps			38		dBc
	9 Mbps			20		dBc
Adjacent channel rejection	54 Mbps			4		dBc
	MCS1			24		dBc
	MCS7			3		dBc
	11b, 1 Mbps	@000 445		18.3		dBm
	11b, 11 Mbps	— @802.11b spectral mask	@802.11b spectral mask			dBm
TV Output name (1)	11g, 9 Mbps	@802.11g spectral mask		18.3		dBm
TX Output power (1)	11g, 54Mbps	EVM=-27dB, 4.5%		13.7		dBm
	11n, MCS1	@802.11n spectral mask		18.3		dBm
	11n, MCS7	EVM=-27 dB		13.5		dBm
On board antenna gain		Average		-1.2		dBi
External antenna gain		SG901-1066 average including cable loss		2.8		dBi

^{1.} Output power and sensitivities are measured with a 50 Ω connection at the antenna port.

4 Pin out description

Table 5. Pin out

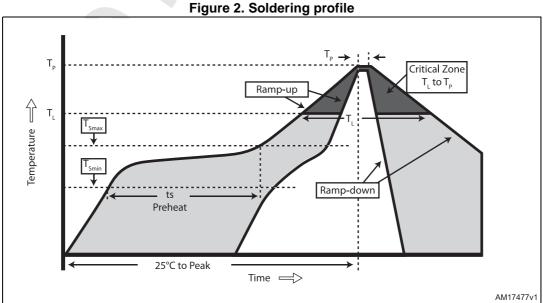
	Table 3. Fill Out							
Signal name	Pin number	Description/alternate function	Notes					
	GPIO Pins and alternate SPI functions							
GPIO0_MISO	16	Alternate SPI MISO pin. Pull high on powerup to reset settings	Input pull down and 5 V tolerant					
GPIO1_MOS1	17	Alternate SPI MOSI	Input pull down and 5 V tolerant					
GPIO2_SPICS	19	Alternate SPI chip select	Floating and 5 V tolerant					
GPIO3_SCLK	1	Alternate SPI clock	Input pull down and 5 V tolerant					
GPIO6_ADC0	22	Wake up/sleep inhibit	Input pull down and 5 V tolerant					
		Reserved Pins for future use						
GPIO4_RXD3	18	Alternate UART3 receive data input						
GPIO5_TXD3	20	Alternate UART3 transmit data output						
GPIO7_ADC1	13							
GPIO8_ADC2	4	Alternate UART2 transmit data output						
GPIO9_ADC3	7	Alternate UART2 receive data input						
		I2C Pins						
GPIO11_SCL	11							
GPIO12_SDA 12								
GPIO15_DAC	21							
	Mon	itoring purpose with no alternate fu	unction					
GPIO10	5	LED drive, blinking while run						
GPIO13	15	LED drive, wifi link						
GPIO14	14	LED drive, power up						
		UART Pins						
RXD1	8	UART1 receive data input	5 V tolerant					
TXD1	6	UART1 transmit data output	5 V tolerant					
CTS1_DN	9	UART1 clear to send input	Active low, 5 V tolerant					
RTS1_DP	10	UART1 request to send output	Active low, 5 V tolerant					
		Reset						
RESETn 3		Reset input	Active low for 5 ms with pull up to 2.5 V DC. Not 5 V tolerant					
		JTAG test pins (1)						
TRST_MISO3	28	JTAG TRST_N, Used for 1M Flash	5 V tolerant					

Table 5. Pin out (continued)

Signal name	Pin number	Description/alternate function	Notes			
TDI	27	JTAG TDI	5 V tolerant			
TMS	26	JTAG TMS	5 V tolerant			
TCK	29	JTAG TCK	5 V tolerant			
TDO_SCK3	30	JTAG TDO, Used for 1M Flash	5 V tolerant			
	Supply pins and paddle					
3.3 V	24	Voltage supply	Decouple with 10 uF capacitor			
Ground	23	Ground				
Ground Paddle	25	Ground	Add plenty of ground vias for thermal dissipation and ground return			
	Firmware load pin access					
воото	2	(See firmware load description)				

To enable the firmware download, Pin BOOT0 needs to be high during power up. RESETn need to be pulled low at least 5 ms to initiate the firmware download sequence.

5 Module reflow


The SPWF01SA and SPWF01SC are surface mount modules with a 6-layer PCB. The final assembly recommended reflow profiles are indicated here below.

The soldering phase must be executed with care: in order to avoid undesired melting phenomenon, particular attention must be paid to the setup of the peak temperature.

The following are some suggestions for the temperature profile based on IPC/JEDEC J-STD-020C, July 2004 recommendations.

Table 6. Soldering values

Profile feature	PB-free assembly
Average ramp-up rate (T _{SMAX} to T _P)	3 °C/sec max
Preheat: - Temperature min. (T _s min.) - Temperature max. (T _s max.) - Time (T _s min. to T _s max) (ts)	150 °C 200 °C 60-100 sec
Critical zone: Temperature T _L Time T _L	217 °C 60-70 sec
Peak temperature (T _P)	240 + 0 °C
Time within 5 °C of actual peak temperature (T _P)	10-20 sec
Ramp-down rate	6 °C/sec
Time from 25 °C to peak temperature	8 minutes max.

6 Regulatory compliance

RF compliance

The RF certifications in Table 7 have been obtained.

Table 7. RF certification summary

		Comment
FCC ID	VRA-SG9011203	On board antenna and external SG901-1066 with connector version
IC ID	7420A-SG9011203	On board antenna and external SG901-1066 with connector version
ETSI	Compliant	Approved with on board antenna and connector version

Note: Sagrad SG901-1066 is the only approved antenna using the UFL connector version.

FCC and IC

This module has been tested and found to comply with the FCC part 15 and IC RSS-210 rules. These limits are designed to provide reasonable protection against harmful interference in approved installations. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference may not occur in a particular installation.

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

This device may not cause harmful interference

and

2. this device must accept any interference received, including interference that may cause undesired operation.

Modifications or changes to this equipment not expressly approved by the part responsible for compliance may render void the user's authority to operate this equipment.

Modular approval, FCC and IC

FCC ID: VRA-SG9011203

IC: 7420A-SG9011203

In accordance with FCC part 15, the modules SPWF01SA and SPWF01SC are listed above as a modular transmitter device.

Label instructions

When integrating the SPWF01SA and SPWF01Sc into the final product, it must be ensured that the FCC labelling requirements, as specified below, are satisfied. Based on the Public Notice from FCC, the product into which the ST transmitter module is installed must display a label referring to the enclosed module. The label should use wording such as the following:

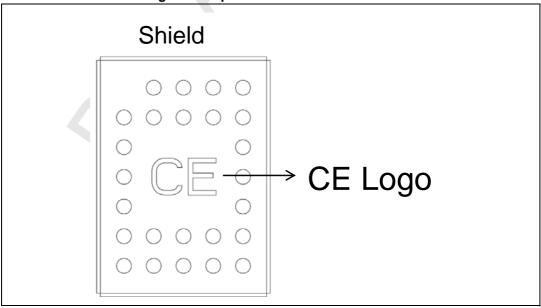
Contains Transmitter Module

FCC ID: VRA-SG90112013

IC: 7420A-SG9011203

Any similar wording that expresses the same meaning may be used.

CE


CE Expert opinion: xxxxxxxxxxx

- Measurements have been performed in accordance with (report available on request):
- EN 300 328 V 1.7.1 (2006-10) (a)
- EN 301 489-17 V 2.1.1 (2009) (b)
- EN60950-1:2006 +A11:2009+A1:2010 (c)

Figure 3. CE certified

Figure 4. Top view of the module shield

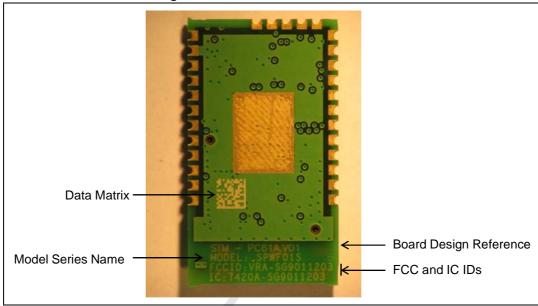


Figure 5. Bottom view of the module

Package mechanical data 7

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

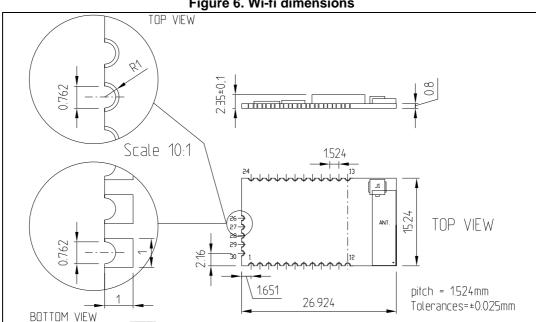


Figure 6. Wi-fi dimensions

Note:

An antenna area of 217X520 mils need to be free of any ground metallization or traces under the unit. The area extending away from the antenna should be free from metal on the PCB and housing to meet expected performance. Pin 25 is the required paddle ground and is not shown in this diagram.

1.524

24

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

1.524

Figure 7. Wi-fi footprint

PCB design requires detailed review of center exposed pad. This pad requires good thermal conductivity. Soldering coverage should be maximized and checked via x-ray for proper design. There is a trade off in providing enough soldering for conductivity and too much which allows the module to "float" on the paddle creating reliability issues. Sagrad recommends two approaches, a large center via that allows excess soldering to flow down into the host PCB with smaller vias arount it. Or many smaller vias with just enough space for the viscosity of the chosen solder/flux to allow some solder to flow into the smaller vias.

Each of these approaches need to result in 60% or more full contact solder coverage on the paddle after reflow. Sagrad strongly encourages PCB layout teams to work with their EMS providers to ensure vias and solder paste designs will result in satisfactory performance.

Note: Pin 1 is on the top left corner of this diagram. See note on the top view pin out for antenna to PCB interference requirements for the layout.

8 Ordering information

Table 8. Ordering information

Order codes	Description
SPWF01SA.11	Wifi module with integrated antenna and WiFi full stack
SPWF01SC.11	Wifi module with integrated u.FL connector and WiFi full stack

Note:

Refer to the user guide for a complete list of features and commands available in the WiFi full stack.

9 Revision history

Table 9. Document revision history

Date	Revision	Changes
30-May-2013	1a	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Rev 1

16/16