

Lithium-ion Battery DATA SHEET

Battery Model: LIR18650

Prepared	Authorized	Approved

Manufacturer: EEMB Co., Ltd. Website: http://eemb.com

Edition: Oct. 2016

This Specification describes the requirements of the lithium ion battery with Lithium nickel manganese cobalt material supplied by EEMB Co., Ltd.

1. BASIC CHARACTERISTICS

ITEM	SPECIFICATION	REMARK
Nominal capacity	3000mAh	Std.charge/discharge
Minimum capacity	2900mAh	Std.charge/discharge
		Constant current
Standard Charge	0.3C(900mA)4.35V 30mA	Constant voltage
		End current
Max. Charge Voltage	4.35±0.005V	/
Max.Charge current	0.5C(1500mA)	/
Standard Disabaras	0.2C (600mA)	Constant current
Standard Discharge	2.75V	End Voltage
Max.Discharge current	0.5C(1500mA)	Constant current
Approx Weight	46.50g	/
Internal resistance	≤60mΩ (with PTC)	AC Impedance, 1000Hz

2. Definition

2.1 Standard charge method

"Standard charge" shall consist of charging at constant current of 0.3C. The cell shall then be charged at constant voltage of 4.35V while tapering the charge current , charging shall be terminated when the charging current has tapered to 30mA. For test purpose ,charging shall be performed at 25°C±2°C

2.2 Standard discharge method

"Standard Discharge" shall consist of discharging at a constant current of 0.2C to 2.75V. Discharging is to be performed at 25°C±2°C unless otherwise noted (such as capacity versus temperature)

2.3 Fast charge/discharge method

Tested at 25 °C±2 °C Cell shall be charged at constant current of 0.3C to 4.35V with end current of 30mA. Cells shall be discharge at constant current of 0.5C to 2.75V. Cells are to rest 10 minutes after charge and 20minutes after discharging.

3. Technical characteristic

3.1 Electrical characteristic

ITEM	CRITERION	Specification
Discharge rate capacity	discharge capacity at 0.5C/discharge capacity at 0.2C	≥97%
Cycle life	Cells shall be charged and discharged per4.3 300cycles.A cycle is defined as one charge and one.	≥75%
High-Low temperature	Cells shall be charged per 2.1 at 25 °C±2 °C and discharge	

Li-ion Battery Edition: Oct. 2016

discharge performance	per 2.2 at the following temperatures		
	Charge	Discharge	Capacity
		-15℃	≥55%
	25℃	-10℃	≥70%
		0℃	≥80%
		25℃	≥100%
		50℃	≥95%
	Cells shall be charged per 2.1 and storage in a		
C4	temperature-controlled envi	ronment at 25 °C±2 °C for 30	Capacity remaining
Storage characteristic	days.After storage,cells shall be discharged per 2.2 to obtain		rate ≥90%
the capacity remaining.			
	Cells shall be charged per 2.1 and storage in a		
High temperature storage	temperature-controlled environment at 60 °C for 1		Capacity recovery
test	week.After storage,cells shall be discharged per 2.2 and		rate≥90%
	cycled per 2.2 for 3 cycles to obtain recovered capacity		

3.2 Environment characteristic

ITEM	CRITERION	Specification
Constant Temperature and High Humidity	Cells are charged per 2.1 and stored at ambient temperature	no distortion,no
	of 40°C±5 °C (95%RH) for 48H,then placed in room	rust,no fume,no
	temperature for 2h,after that,check its appearance prior to	explosion;
	being discharged cut -off voltage at a constant current of	The discharging time
	0.2C.	is not less than 180min
Drop test	Cells charge per 2.1 are dropped onto wooden floor from 1.0	No leakage,no
	meter height for 1cycle,2 drops from each cell terminal and	fume,no explosion
	1drop from the side of cell can (Total number of drops=3)	runic,no explosion
	After Standard charge, cells are fixed on vibration table and	
	subjected to vibration cycling at the rate of 1Hz per	No leakage, fire or
Vibration Test	minute between 10HZ and 55Hz. The excursion of the	explosion
	vibration is 1.52mm. The test has to be carried out for 90	
	minutes at x,y and z axes individually.	

3.3 Safety Test

All below tests are carried out on the equipment with forced ventilation and explosion-proof device. Before test all cells are charged in accordance with 2.1, and stored 24 prior to testing.

	, 1	
ITEM	CRITERION	Specification
	A cell is to be placed on the crush flat, the axis is parallel to	
Crush Test	Crush Test the crush flat,it is to be crushed between two flat surfaces. Crushing force is approximately 13KN and hold for	

Li-ion Battery Edition: Oct. 2016

	Cells charge per 2.1 are impacted with their longitudinal		
	axis parallel to the flat surface to the flat surface and		
Impact Test	perpendicular to the longitudinal axis of the 15.8±0.2mm	no fume,no explosion	
	diameter bar.A 9.1±0.1 Kg weight is to be dropped from a		
	height of 610±25mm onto the cell		
	Cells are charged per 2.1 and heated in a circulation air oven		
Heating Test	at a rate of $(5\pm2)^{\circ}$ C per minute to $(130\pm2)^{\circ}$ C.At 130° C	No fire or explosion	
	oven is to remain for 10 minutes before test is discontinued		
	A cell is discharged to cut-off voltage at CC of 0.2C, then it		
	is to be subjected to CC /CV power by connecting its		
Overcharge Test	positive & negative terminal, then set the current of 3 times	No fire,no explosion	
Overcharge Test	the max.set the voltage as 10V, after that , charge the cell up	No me,no explosion	
	to 10V at 3 times current at the max, until that last 7h at the		
	voltage of 10V or the voltage in no more increased.		
Short-circuit test	Cell are charged per 2.1, and the positive and negative		
	terminal is connected by a (80±20)mΩ-wire. Monitor its	no fire ,no explosion	
	temperature while testing, the cell is to be discharged until	Max.temp.<150°C	
	the cell case temperature has returned to be 20% less then	171ax.temp. \130 C	
	peak temperature		

4. PROTECTION

When Li-ion rechargeable battery is used over the permitted voltage or current, electrolyte may disassemble, and this case will affect safety performance of Li-ion rechargeable battery. So protection circuit module were used in order to prevent overcharge, over discharge and over current.

WARNINGS!

- 1) Do not immerse the battery in water or seawater, and keep the battery in a cool dry surrounding if it stands by.
- 2) Do not use or leave the battery near a heat source as fire or heater
- 3) When recharging, use the battery charger specifically for that purpose
- 4) Do not reverse the position (+) and negative (-) terminals
- 5) Do not connect the battery to an electrical outlet
- 6) Do not discard the battery in fire or heat it
- 7) Do not short-circuit the battery by directly connecting the positive (+) and negative (-) terminal with metal objects such as wire.
- 8) Do not transport or store the battery together with metal objects such as necklaces, hairpins etc.
- 9) Do not strike or throw the battery
- 10) Do not directly solder the battery and pierce the battery with a nail or other sharp object.

Li-ion Battery Edition: Oct. 2016

- Do not use or leave the battery at very high temperature (for example, at strong direct sunlight or in a
 vehicle in extremely hot weather). Otherwise, it can overheat or fire or its performance will be
 degenerate and its service life will be decreased.
- 2) Do not use it in a location where static electricity is great, otherwise, the safety devices may be damaged, causing hidden trouble of safety.
- 3) If the battery leaks, and the electrolyte get into the eyes. Do not rub eyes, instead, rinse the eyes with clean running water, and immediately seek medical attention. Otherwise, it may injure eyes or cause a loss of sight.
- 4) If the battery gives off an odor, generates heat, becomes discolored or deformed, or in any way appear abnormal during use, recharging or storage, immediately remove it from the device or battery charger and stop using it.
- 5) In case the battery terminals are dirt, clean the terminals with a dry cloth before use. Otherwise power failure or charge failure may occur due to the poor connection with the instrument.
- 6) Be aware discarded batteries may cause fire, tape the battery terminals to insulate them.

Special notice!

Keep the cells in 50% charged state during long period storage. We recommend to charge the battery up to 50% of the total capacity every 3 months after receipt of the battery and maintain the voltage 3.7~4.0V. And store the battery in cool and dry place.