BAP
Analog Barometric Air Pressure Sensor IC

KP234
Analog Absolute Pressure Sensor

Data Sheet
Revision 1.0, 2010-06-21
KP234 Analog Absolute Pressure Sensor

Revision History: 2010-06-21, Revision 1.0

Previous Revision: Revision 0.9.1

Page Subjects (major changes since last revision)

Page 17 Comment about application circuit example added

Page 18 Thermal resistance specified according JESD51-2

Change document status from preliminary to final

Trademarks of Infineon Technologies AG

A-GOLD™, BlueMoon™, COMNEON™, CONVERGATE™, COSIC™, C166™, CROSSAVETM, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CONVERPATH™, CORECONTROL™, DAVE™, DUALFALC™, DUSLIC™, EasyPIM™, EconoBRIDGEG, EconoDUAL™, EconoPACK™, EconoPIM™, E-GOLD™, EiceDRIVER™, EUPEC™, ELIC™, EPIC™, FALC™, FCOS™, FLEXISLIC™, GEMINAX™, GOLDMOS™, HITFET™, HybridPACK™, INCA™, ISAC™, ISOFACE™, IsOPACK™, IWORX™, M-GOLD™, MIPAQ™, ModSTACK™, MUSLIC™, my-d™, NovalithIC™, OCTALFALC™, OCTAT™, OmniTune™, OmniVia™, OptiMOS™, OPTIVERSE™, ORIGA™, PROFET™, PRO-SIL™, PrimePACK™, QUADFALC™, RASIC™, ReverSave™, SatRIC™, SCTRE™, SCOUT™, S-GOLD™, SensoNor™, SEROCO™, SICOFI™, SIEGET™, SINDRION™, SLIC™, SMARTi™, SmartLEWIS™, SMINT™, SOCRATES™, TEMPFET™, thinQ™, TrueNTRY™, TriCore™, TRENCHSTOP™, VINAX™, VINETIC™, VIONTIC™, WildPass™, X-GOLD™, XMM™, X-PMU™, XPOSYS™, XWAY™.

Other Trademarks

Last Trademarks Update 2009-10-19
Table of Contents

Table of Contents .. 5
List of Figures .. 6
List of Tables .. 7
1 Product Description .. 8
1.1 Features .. 8
1.2 Target Applications ... 8
2 Functional Description .. 9
2.1 Pin Configuration .. 10
2.2 Pin Description ... 10
2.3 Block Diagram .. 11
2.4 Transfer Function .. 12
2.5 Accuracy .. 13
2.5.1 Ratiometric Error ... 13
2.5.2 Overall Accuracy ... 13
2.6 Output Voltage versus Load ... 15
2.7 Timing Properties .. 16
3 Specification .. 17
3.1 Application Circuit Example .. 17
3.2 Absolute Maximum Ratings .. 18
3.3 Operating Range ... 19
3.4 Characteristics .. 20
4 Package Information ... 22
4.1 PG-DSOF-8-16 Outline ... 22
4.2 Identification Code .. 23
List of Figures

Figure 1 Pin configuration (top view, figure not to scale) 10
Figure 2 Functional block diagram .. 11
Figure 3 Transfer function .. 12
Figure 4 Ratiometric error ... 13
Figure 5 Accuracy for pressure acquisition 14
Figure 6 Maximum output voltage limit with pull-down load 15
Figure 7 Minimum output voltage limit with pull-up load 15
Figure 8 Power-up time ... 16
Figure 9 Response and stabilization time 16
Figure 10 Application circuit example .. 17
Figure 11 Package outline (all dimensions in mm) 22
Figure 12 Identification Code .. 23
List of Tables

Table 1 Pin Description ... 10
Table 2 Transfer function ... 12
Table 3 Ratiometric Error ... 13
Table 4 Accuracy .. 14
Table 5 Component Values .. 17
Table 6 Absolute Maximum Ratings ... 18
Table 7 Operating Range ... 19
Table 8 Electrical Characteristics .. 20
Table 9 Transfer Function ... 21
1 Product Description
The KP234 is a miniaturized Analog Barometric Air Pressure Sensor IC based on a capacitive principle. It is surface micromachined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology.

The sensor converts a pressure into an analog output signal. The calibrated transfer function converts a pressure range of 40 kPa to 115 kPa into a voltage range of 1.33 V to 4.70 V.

The chip is packaged in a “green” SMD housing. The sensor has been primarily developed for measuring barometric air pressure, but can also be used in other application fields. The high accuracy and the high sensitivity of the device makes it a perfect fit for advanced automotive applications as well as in industrial and consumer applications.

1.1 Features
Following features are supported by the KP234:

- High precision pressure sensing (± 1.5 kPa)
- Ratiometric analog output
- Large temperature range (-40 °C to 125 °C)
- Broken wire detection
- “Green” 8 pin SMD housing
- Automotive qualified

1.2 Target Applications
The KP234 is defined for use in following target applications:

- Automotive applications (barometric air pressure measurement)
- Industrial control
- Consumer applications
- Medical applications
- Weather stations
- Altimeters

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Product Type</th>
<th>Ordering Code</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Absolute Pressure Sensor</td>
<td>KP234</td>
<td>SP000700772</td>
<td>PG-DSOF-8-16</td>
</tr>
</tbody>
</table>
2 Functional Description

The pressure is detected by an array of capacitive surface micromachined sensor cells. The sensor cell output is amplified, temperature compensated and linearized to obtain an output voltage that is proportional to the applied pressure.

The transfer function for linearization is computed in the digital part of the sensor using a third order polynomial calculation. The transfer function is created from the following parameters:

- Minimum and maximum rated pressure
- Voltage level at minimum and maximum rated pressure

The output is analog and ratiometric with respect to the supply voltage.

All parameters needed for the complete calibration algorithm — such as offset, gain, temperature coefficients of offset and gain, and linearization parameters — are determined after assembly. The parameters are stored in an integrated E²PROM. The E²PROM content is protected with forward error correction (a one bit error is detected and corrected, errors of more than one bit are detected and the output signal is switched to ground potential).

Open Bond Detection

When the chip is not powered properly, the JFET transistors of the broken wire detection stage are self-conducting. For example, if the GND connection is interrupted, the output is drawn strongly to VDD. Similarly, if the VDD connection is broken, the output is drawn to GND.
2.1 Pin Configuration

Figure 1 shows the pin configuration.

![Pin configuration (top view, figure not to scale)](image)

2.2 Pin Description

Table 1 shows the pin description.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TEST</td>
<td>Test pin<sup>1</sup></td>
</tr>
<tr>
<td>2</td>
<td>CLOCK / V<sub>PROG</sub></td>
<td>External clock for communication / programming voltage<sup>1</sup></td>
</tr>
<tr>
<td>3</td>
<td>DATA IN</td>
<td>Serial data input pin<sup>1</sup></td>
</tr>
<tr>
<td>4</td>
<td>DATA OUT</td>
<td>Serial data output pin<sup>1</sup></td>
</tr>
<tr>
<td>5</td>
<td>V<sub>DD</sub></td>
<td>Supply voltage</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Circuit ground potential<sup>2</sup></td>
</tr>
<tr>
<td>7</td>
<td>V<sub>OUT</sub></td>
<td>Analog pressure signal output</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Circuit ground potential<sup>2</sup></td>
</tr>
</tbody>
</table>

¹ Digital pins are used only during calibration and test. It is recommended to leave these pins floating (in case of an open GND connection, the floating pins prevent from a cross grounding through the corresponding ESD diodes).

² It is recommended to connect both GND pins.
2.3 Block Diagram

Figure 2 shows the functional block diagram.

![Functional block diagram]
2.4 Transfer Function

The KP234 device is fully calibrated on delivery. The sensor has a linear transfer function between the applied pressure and the output signal:

\[V_{\text{OUT}} = V_{\text{DD}} \times (a \times P + b) \]

The output signal is ratiometric. Gain \(a \) and offset \(b \) are determined during calibration in order to generate the required transfer function.

Calibrated Transfer Function

The following calibration is adjusted with the parameters \(a \) and \(b \):

Table 2 Transfer function

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pressure</th>
<th>Unit</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{IN},1})</td>
<td>15</td>
<td>kPa</td>
<td>(V_{\text{OUT},1})</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td>(P_{\text{IN},2})</td>
<td>115</td>
<td>kPa</td>
<td>(V_{\text{OUT},2})</td>
<td>4.7</td>
<td>V</td>
</tr>
</tbody>
</table>

Note: The points \(P_{\text{IN},1}/V_{\text{OUT},1} \) and \(P_{\text{IN},2}/V_{\text{OUT},2} \) define the calibrated transfer function and not the operating range. The operating pressure range is defined by the parameter 2.4 “Ambient operating pressure range” on Page 19

Figure 3 Transfer function

Note: The application circuitry determines the current driven by the device and thus may have an impact on the output voltage delivered by the sensor.
2.5 Accuracy

The accuracy of the KP234 sensor is influenced by the supply voltage (ratiometric error) as well as by pressure, temperature and aging effects. The specified value, calculated with the transfer function, represents the theoretical value (see Figure 3). The error equals the deviation between the measured output voltage value and the specified output voltage value.

2.5.1 Ratiometric Error

Ideally the sensor is ratiometric - the output (V_{OUT}) scales by the same ratio that V_{DD} increases or decreases. The ratiometric error is defined as the difference between the ratio that V_{DD} changed and the ratio that V_{OUT} changed, expressed as a percentage.

$$E_{RAT} (%) = \frac{V_{OUT}(@V_{DD}) - V_{OUT}@5V} {5V} \times \frac{V_{DD}} {V_{OUT}@5V} \times 100\%$$

The output voltage V_{OUT} is ratiometric to V_{DD}. V_{DD} must be in the operating range provided in Table 7.

<table>
<thead>
<tr>
<th>Supply voltage (V)</th>
<th>Max. ratiometric error (E_{RAT} in % of $V_{DD,TYP}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{DD,Min}$</td>
<td>± 0.5</td>
</tr>
<tr>
<td>$V_{DD,TYP}$</td>
<td>0</td>
</tr>
<tr>
<td>$V_{DD,Max}$</td>
<td>± 0.5</td>
</tr>
</tbody>
</table>

Table 3 Ratiometric Error

![Figure 4 Ratiometric error](image)

2.5.2 Overall Accuracy

Overall accuracy covers the entire pressure and temperature range from different sources of error including the following:

- **Pressure:**
 Output deviation from target transfer function over the specified pressure range

- **Temperature:**
 Output deviation over the temperature range

- **Aging:**
 Parameter drift over life time
Note: Ratiometric signal error is not included in the overall accuracy. For error measurements, the supply voltage must have the nominal value ($V_{DD} = V_{DD,Typ}$).

The error band is determined by three continuous lines through four relevant breakpoints.

Table 4 Accuracy

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Error [kPa]</th>
<th>Error Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>±4.5</td>
<td>3.0</td>
</tr>
<tr>
<td>0</td>
<td>±1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>85</td>
<td>±1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>125</td>
<td>±2.625</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Figure 5 Accuracy for pressure acquisition
2.6 Output Voltage versus Load

The output voltage limits depend on:
- The value of the external load resistor.
- The type of connection (pull-up or pull-down).

![Figure 6: Maximum output voltage limit with pull-down load](image1)

![Figure 7: Minimum output voltage limit with pull-up load](image2)

Note: The values in the diagrams are valid for the entire specified temperature range. The two diagrams above do not take into account clamping levels. In case clamping levels are implemented, the output voltage is clamped accordingly.
2.7 Timing Properties

Power-up Time
The power-up time \(t_{UP} \) is defined as the maximum time between the supply voltage reaching its operating range and the output voltage reaching 90% of its final value (assuming pin \(V_{OUT} \) open and constant input pressure).

![Figure 8 Power-up time](image)

Response Time and Stabilization Time
The response time \(t_R \) is defined as the time required by the output to change from 10% to 90% of its final value after a specified pressure step (assuming pin \(V_{OUT} \) open).

The stabilization time \(t_S \) is defined as the time required by the output to meet the specified accuracy after the pressure has been stabilized (assuming pin \(V_{OUT} \) open).

![Figure 9 Response and stabilization time](image)

Note: The values in the diagrams are valid for the entire specified temperature range.
3 Specification

3.1 Application Circuit Example

It is recommended to protect the pressure sensor IC against overload and electro-magnetic interferences (as shown in Figure 10). The output circuit acts as a low-pass decoupling filter between the sensor IC output and the A/D input of the microcontroller.

The shown application circuit example considers an increased cable length between the sensor and the microcontroller. A combined location on a PCB with reduced distance between the sensor and the controller allows a reduction of the numbers of the passive components (e.g. \(C_2, R_1 \) and \(R_2 \) can be omitted).

![Application circuit example](image)

Figure 10 Application circuit example

Note: It is recommended to leave the digital pins \(\text{CLOCK}/V_{\text{PROG}}, \text{DATA IN} \) and \(\text{DATA OUT} \) floating (in case of an open GND connection, the floating pins prevent from a cross grounding through the corresponding ESD diodes).

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>Pull-Up Resistor</td>
<td>(R_1)</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>Pull-Down Resistor</td>
<td>(R_2)</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>Low Pass Resistor</td>
<td>(R_3)</td>
<td>3.9</td>
<td>22</td>
</tr>
<tr>
<td>Supply Blocking Capacitor</td>
<td>(C_1)</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Output Blocking Capacitor</td>
<td>(C_2)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Low Pass Capacitor</td>
<td>(C_3)</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
3.2 Absolute Maximum Ratings

Table 6 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>$V_{DD_{max}}$</td>
<td>-0.3</td>
<td>V</td>
<td>$-6.5^{1)}$</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>6.5</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>V</td>
<td>1 h @ 70°C Limited time: Max. 300 s</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_{OUT}</td>
<td>-0.3</td>
<td>V</td>
<td>$V_{DD} + 0.3$</td>
<td>1.2</td>
</tr>
<tr>
<td>Voltage on CLOCK / V_{PROG} pin</td>
<td>V_{CLK}</td>
<td>-</td>
<td>20</td>
<td>V</td>
<td>1.3</td>
</tr>
<tr>
<td>Voltage on DATA IN & DATA_OUT pins</td>
<td>V_{DATA}</td>
<td>-</td>
<td>5</td>
<td>V</td>
<td>1.4</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_s</td>
<td>-60</td>
<td>150</td>
<td>°C</td>
<td>1.5</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>R_{thJA}</td>
<td>-</td>
<td>180</td>
<td>K/W</td>
<td>1.6</td>
</tr>
<tr>
<td>Maximum input pressure</td>
<td>$p_{amb_{max}}$</td>
<td>40</td>
<td>150</td>
<td>kPa</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>kPa</td>
<td></td>
</tr>
<tr>
<td>ESD robustness (HBM: 1.5 kΩ, 100 pF)</td>
<td>V_{ESD}</td>
<td>-</td>
<td>2</td>
<td>kV</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1) Reverse polarity; $I_{DD} < 300$ mA

Attention: Stresses above the max. values listed in Table 6 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.
3.3 Operating Range

The following operating conditions must not be exceeded in order to ensure correct operation of the device. All parameters specified in the following sections refer to these operating conditions, unless noted otherwise.

Table 7 Operating Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{DD}</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output current on V_{OUT} pin</td>
<td>I_{OUT}</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_a</td>
<td>-40</td>
<td>-</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient operating pressure range</td>
<td>p_{amb}</td>
<td>40</td>
<td>-</td>
<td>115</td>
<td>kPa</td>
</tr>
<tr>
<td>Lifetime1</td>
<td>t_{live}</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>years</td>
</tr>
</tbody>
</table>

1) The lifetime shall be considered as anticipation with regard to the product that shall not extend the agreed warranty period.
3.4 Characteristics

Table 8 Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage range</td>
<td>$V_{\text{OUT,R}}$</td>
<td>0.10 – 4.85 V</td>
<td></td>
<td>See also section “Output Voltage versus Load” on Page 15</td>
<td>3.1</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{DD}</td>
<td>– 8 10 mA</td>
<td></td>
<td>During power up a peak supply current of max. 22 mA is possible</td>
<td>3.2</td>
</tr>
<tr>
<td>Output referred noise</td>
<td>V_{NOISE}</td>
<td>– 2.5 1.8 mV</td>
<td>mV RMS</td>
<td>Frequency > 1 kHz</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Frequency < 1 kHz</td>
<td></td>
</tr>
<tr>
<td>Response time$^2)$</td>
<td>I_{R}</td>
<td>0.65 1.0$^3)$</td>
<td>ms</td>
<td>10% to 90% of the final output value</td>
<td>3.4</td>
</tr>
<tr>
<td>Stabilization time$^2)$</td>
<td>I_{S}</td>
<td>– 10 ms</td>
<td></td>
<td>For full accuracy</td>
<td>3.5</td>
</tr>
<tr>
<td>Power-up time$^2)$</td>
<td>I_{UP}</td>
<td>– 5 ms</td>
<td></td>
<td>90% of the final output value</td>
<td>3.6</td>
</tr>
<tr>
<td>Broken wire: Diagnosis response</td>
<td>I_{OBD}</td>
<td>– 1 ms</td>
<td>ms</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>time$^4)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBD transistor on resistance</td>
<td>$R_{\text{DSO\text{N}}}$</td>
<td>– 160 Ω</td>
<td></td>
<td></td>
<td>3.8</td>
</tr>
</tbody>
</table>

1) 200 measurements in sequence, bandwidth limited to 40kHz
2) More details in section “Timing Properties” on Page 16
3) The maximum response time considers a maximal value of 100nF for the output blocking capacitor C_2 and a maximum pressure pulse equivalent 4.0V output change
4) In the event of a broken wire (broken VDD line or broken GND line), the output changes to certain voltage levels within the broken wire response time. The OBD ranges are determined by the application circuitry
Table 9 Transfer Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>S</td>
<td>–</td>
<td>45.0</td>
<td>mV/kPa</td>
<td>4.1</td>
</tr>
<tr>
<td>Accuracy pressure (overall)</td>
<td>acc_p</td>
<td>-1.5</td>
<td>–</td>
<td>1.5 kPa</td>
<td>0°C up to 85 °C @ -40°C @ 125°C</td>
</tr>
<tr>
<td>Ratiometric error</td>
<td>E_{RAT}</td>
<td>-25</td>
<td>–</td>
<td>25 mV</td>
<td>4.3</td>
</tr>
</tbody>
</table>

1) More details in section “Overall Accuracy” on Page 13
2) More details in section “Ratiometric Error” on Page 13
4 Package Information

The PG-DSOF-8-16 package is optimized regarding external mechanical stress influences. The package fulfills the solder conditions for lead-free board assembly. Details (soldering profile, application notes, etc.) are available under: www.infineon.com/package.

Note: In the application, it is recommended to ensure that the same pressure is applied to the whole package.

4.1 PG-DSOF-8-16 Outline

Figure 11 Package outline (all dimensions in mm)
4.2 Identification Code

The identification code is provided in a machine readable format. The date and sales code are provided in human readable format.

Figure 12 Identification Code

The identification code for the KP234 is on the same side of the package as pin 8 (GND).