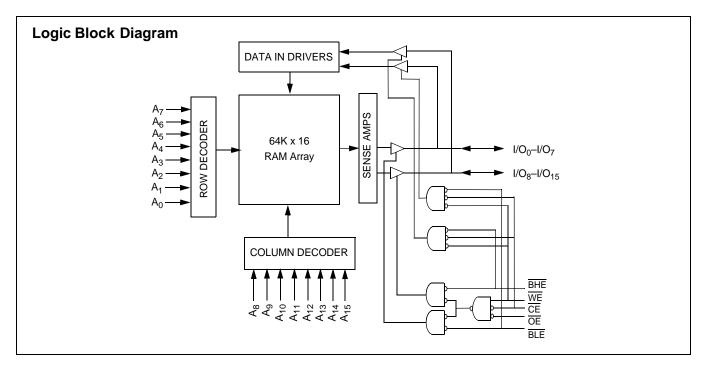


1-Mbit (64K x 16) Static RAM

Features

- Temperature Ranges
 - Industrial: –40°C to 85°C
- Automotive-A: -40°C to 85°C
- Automotive-E: -40°C to 125°C
- Pin-and function-compatible with CY7C1021CV33
- · High speed
 - $t_{AA} = 10 \text{ ns}$
- · Low active power
 - $I_{CC} = 60 \text{ mA} @ 10 \text{ ns}$
- · Low CMOS standby power
 - $I_{SB2} = 3 \text{ mA}$
- 2.0V data retention
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- · Independent control of upper and lower bits
- Available in Pb-free 44-pin 400-Mil wide Molded SOJ, 44-pin TSOP II and 48-ball VFBGA packages

Functional Description^[1]


The CY7C1021DV33 is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

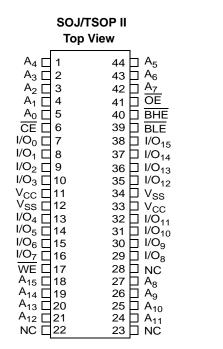
Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{15}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{15}$).

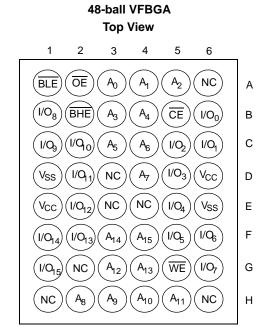
Reading from the device is accomplished by taking Chip Enable (\overline{OE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the end of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1021DV33 is available in Pb-free 44-pin 400-Mil wide Molded SOJ, 44-pin TSOP II and 48-ball VFBGA packages.

Note


1. For guidelines on SRAM system design, please refer to the "System Design Guidelines" Cypress application note, available on the internet at www.cypress.com



Selection Guide

	-10 (Industrial/Automotive-A)	-12 (Automotive-E) ^[2]	Unit
Maximum Access Time	10	12	ns
Maximum Operating Current	60	100	mA
Maximum CMOS Standby Current	3	15	mA

Pin Configuration^[3]

Notes

- 2. Automotive product information is Preliminary.
- 3. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[4]}$ –0.3V to +4.6V DC Voltage Applied to Outputs in High-Z State^[4]-0.3V to V_{CC}+0.3V DC Input Voltage^[4].....-0.3V to V_{CC}+0.3V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}	Speed
Industrial	-40°C to +85°C	$3.3V \pm 0.3V$	10 ns
Automotive-A	-40°C to +85°C		10 ns
Automotive-E	-40°C to +125°C		12 ns

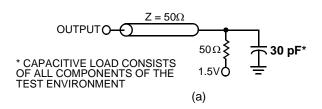
DC Electrical Characteristics Over the Operating Range

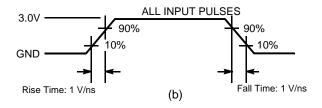
Doromotor	Description	Test Condition		–10 (Ind	I/Auto-A)	-12 (A	uto-E)	Unit
Parameter	Description	rest Condition	15	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 i	mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 m	A		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.0	$V_{CC} + 0.3$	2.0	$V_{CC} + 0.3$	V
V _{IL}	Input LOW Voltage ^[4]			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$		-1	+1	-5	+5	μА
I _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Outpu	t Disabled	-1	+1	-5	+5	μА
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	100 MHz		60		-	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	83 MHz		55		100	mA
		WAX TIC	66 MHz		45		90	mA
			40 MHz		30		60	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, f	= f _{MAX}		10		50	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$ or $V_{IN} \le V_{CC} - 0.3V$ or $V_{IN} \le V_{CC} - 0.3V$			3		15	mA

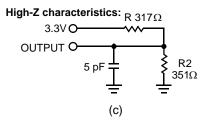
Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$	8	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance^[5]


Parameter	Description	Test Conditions	SOJ	TSOP II	VFBGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	59.52	53.91	36	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)		36.75	21.24	9	°C/W


Notes


- 4. V_{IL} (min.) = -2.0V and V_{IH}(max) = V_{CC} + 1V for pulse durations of less than 5 ns.
 5. Tested initially and after any design or process changes that may affect these parameters.

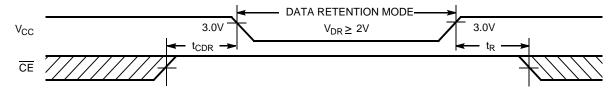
AC Test Loads and Waveforms^[6]

Note

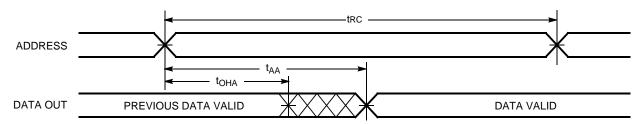
AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

Switching Characteristics Over the Operating Range^[7]

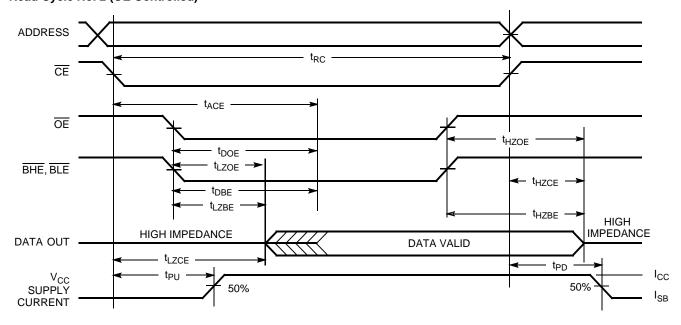
		-10 (Ind'	-10 (Ind'I/Auto-A)		uto-E)		
Parameter	Description	Min.	Max.	Min.	Max.	Unit	
Read Cycle		•	•		•		
t _{power} [8]	V _{CC} (typical) to the first access	100		100		μS	
t _{RC}	Read Cycle Time	10		12		ns	
t _{AA}	Address to Data Valid		10		12	ns	
t _{OHA}	Data Hold from Address Change	3		3		ns	
t _{ACE}	CE LOW to Data Valid		10		12	ns	
t _{DOE}	OE LOW to Data Valid		5		6	ns	
t _{LZOE}	OE LOW to Low-Z ^[10]	0		0		ns	
t _{HZOE}	OE HIGH to High-Z ^[9, 10]		5		6	ns	
t _{LZCE}	CE LOW to Low-Z ^[10]	3		3		ns	
t _{HZCE}	CE HIGH to High-Z ^[9, 10]		5		6	ns	
t _{PU} ^[11]	CE LOW to Power-Up	0		0		ns	
t _{PD} ^[11]	CE HIGH to Power-Down		10		12	ns	
t _{DBE}	Byte Enable to Data Valid		5		6	ns	
t _{LZBE}	Byte Enable to Low-Z	0		0		ns	
t _{HZBE}	Byte Disable to High-Z		6		6	ns	
Write Cycle ^[12]			•				
t _{WC}	Write Cycle Time	10		12		ns	
t _{SCE}	CE LOW to Write End	8		9		ns	
t _{AW}	Address Set-Up to Write End	8		9		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-Up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	7		8		ns	
t _{SD}	Data Set-Up to Write End	5		6		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{LZWE}	WE HIGH to Low-Z ^[10]	3		3		ns	
t _{HZWE}	WE LOW to High-Z ^[9, 10]		5		6	ns	
t _{BW}	Byte Enable to End of Write	7		8		ns	


- 7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
- 8. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
 9. t_{HZOE}, t_{HZDE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in (c) of AC Test Loads. Transition is measured when the outputs enter a high impedance state 10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.
- 11. This parameter is guaranteed by design and is not tested.
- 12. The internal Write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE/BLE LOW. CE, WE and BHE/BLE must be LOW to initiate a Write and the transition of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.

Data Retention Characteristics Over the Operating Range


Parameter	Description	Conditions		Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V, V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$	Industrial		3	mA
		$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	Automotive		15	mA
t _{CDR} ^[5]	Chip Deselect to Data Retention Time			0		ns
t _R ^[13]	Operation Recovery Time			t _{RC}		ns

Data Retention Waveform



Switching Waveforms

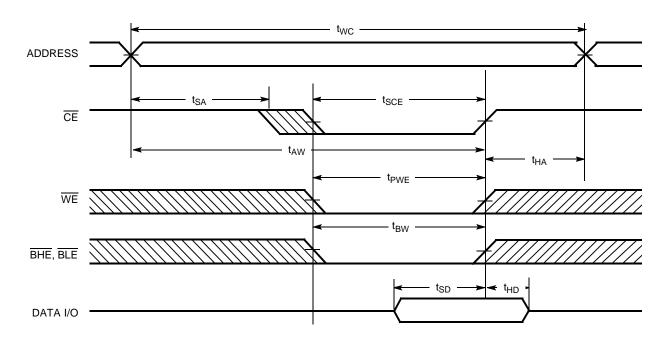
Read Cycle No. 1 (Address Transition Controlled)[14, 15]

Read Cycle No. 2 (OE Controlled)[15, 16]

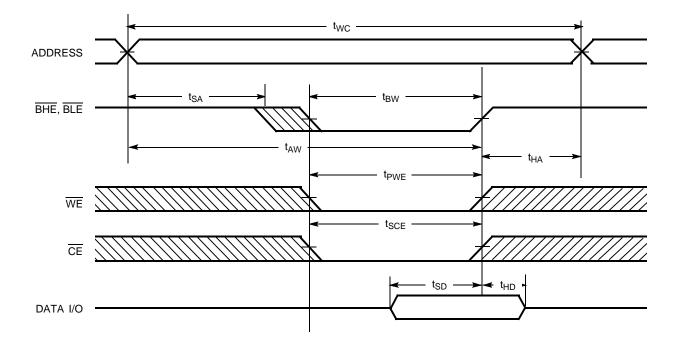
Notes

- 13. Full device operation requires lin<u>ear V_{CC} ramp</u> from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs.

 14. Device is continuously selected. OE, CE, BHE and/or BLE = V_{IL}.


 15. WE is HIGH for Read cycle.

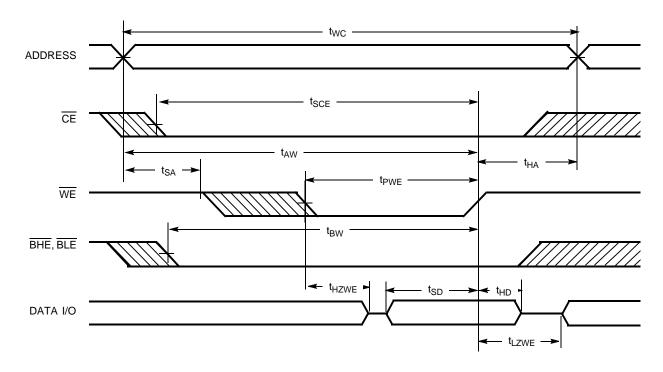
 16. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[17, 18]

Write Cycle No. 2 (BLE or BHE Controlled)


^{17.} Data I/O is high impedance if \overline{OE} or \overline{BHE} and/or $\overline{BLE} = V_{IH}$.

18. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Х	X	Х	High-Z	High-Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High-Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High-Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High-Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High-Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Χ	Х	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

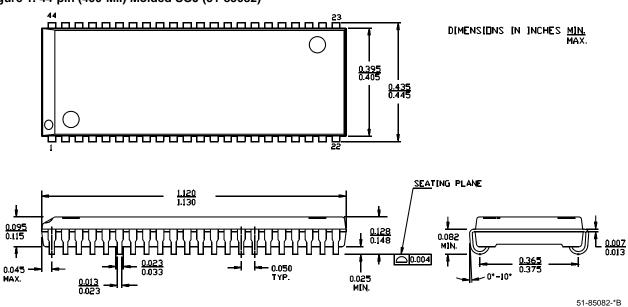
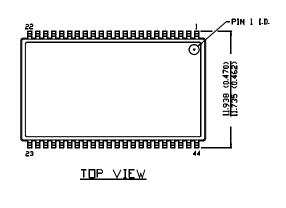
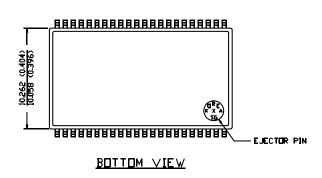
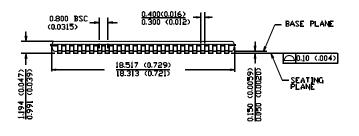
Ordering Information

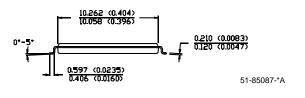
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1021DV33-10VXI	51-85082	44-pin (400-Mil) Molded SOJ (Pb-free)	Industrial
	CY7C1021DV33-10ZSXI	51-85087	44-pin TSOP Type II (Pb-free)	
	CY7C1021DV33-10BVXI	51-85150	48-ball VFBGA (Pb-free)	
10	CY7C1021DV33-10ZSXA	51-85087	44-pin TSOP Type II (Pb-free)	Automotive-A
12	CY7C1021DV33-12ZSXE	51-85087	44-pin TSOP Type II (Pb-free)	Automotive-E

Please contact your local Cypress sales representative for availability of these parts.

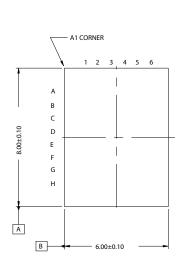
Package Diagrams

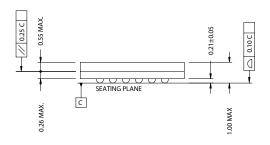
Figure 1. 44-pin (400-Mil) Molded SOJ (51-85082)


Figure 2. 44-pin Thin Small Outline Package Type II (51-85087)

DIMENSION IN MM (INCH) MAX NITT





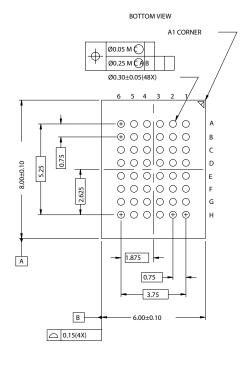

Package Diagrams (continued)

Figure 3. 48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

TOP VIEW

51-85150-*D

All products and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Information data sheet for C9 IPP
*A	233693	See ECN	RKF	DC parameters are modified as per Eros (Spec # 01-02165). Pb-free Offering In Ordering Information
*B	263769	See ECN	RKF	Changed I/O ₁ – I/O ₁₆ to I/O ₀ – I/O ₁₅ Added Data Retention Characteristics table Added T _{power} Spec in Switching Characteristics table Shaded Ordering Information
*C	307601	See ECN	RKF	Reduced Speed bins to -8 and -10 ns
*D	520652	See ECN	VKN	Converted from Preliminary to Final Removed Commercial Operating range Removed 8 ns speed bin Added I _{CC} values for the frequencies 83MHz, 66MHz and 40MHz Added Automotive Information Updated Thermal Resistance table Updated Ordering Information Table Changed Overshoot spec from V _{CC} +2V to V _{CC} +1V in footnote #4