## 1-Mbit (128K x 8) Static RAM

## Features

- Pin- and function-compatible with CY7C1019B
- High speed
$-\mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$
- Low active power
- $\mathrm{I}_{\mathrm{CC}}=80 \mathrm{~mA} @ 10 \mathrm{~ns}$
- Low CMOS standby power
$-I_{\mathrm{SB} 2}=3 \mathrm{~mA}$
- 2.0V Data retention
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Center power/ground pinout
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- Functionally equivalent to CY7C1019B
- Available in Pb-free 32-pin 400-Mil wide Molded SOJ and 32-pin TSOP II packages


## Functional Description ${ }^{[1]}$

The CY7C1019D is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ( $\overline{\mathrm{CE}}$ ), an active LOW Output Enable ( $\overline{\mathrm{OE}}$ ), and tri-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected. The eight input and output pins $\left(\mathrm{IO}_{0}\right.$ through $\left.\mathrm{IO}_{7}\right)$ are placed in a high-impedance state when:

- Deselected ( $\overline{\text { CE }}$ HIGH)
- Outputs are disabled ( $\overline{\mathrm{OE}}$ HIGH)
- When the write operation is active ( $\overline{C E} L O W$, and $\overline{W E} L O W$ ).

Write to the device by taking Chip Enable ( $\overline{\mathrm{CE}})$ and Write Enable ( $\overline{\mathrm{WE}})$ inputs LOW. Data on the eight $I \mathrm{O}$ pins $\left(\mathrm{IO}_{0}\right.$ through $\mathrm{IO}_{7}$ ) is then written into the location specified on the address pins ( $\mathrm{A}_{0}$ through $\mathrm{A}_{16}$ ).
Read from the device by taking Chip Enable ( $\overline{\mathrm{CE}}$ ) and Output Enable ( $\overline{\mathrm{OE}}$ ) LOW while forcing Write Enable ( $\overline{\mathrm{WE}}$ ) HIGH. Under these conditions, the contents of the memory location specified by the address pins appears on the IO pins.

## Logic Block Diagram



Note

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines’ Cypress application note, available on the internet at www.cypress.com.

CY7C1019D

## Pin Configuration

|  | SOJ/TSOPII Top View |  |  |
| :---: | :---: | :---: | :---: |
| $A_{0}$ | 1 | 32 | A $\mathrm{A}_{16}$ |
| $\mathrm{A}_{1}$ | -2 | 31 | $\mathrm{A}_{15}$ |
| $\mathrm{A}_{2}$ | $\square^{3}$ | 30 | - $A_{14}$ |
| $\mathrm{A}_{3}$ | 4 | 29 | - $A_{13}$ |
| $\overline{C E}$ | $\square 5$ | 28 | OE |
| 100 | -6 | 27 | $\mathrm{V}^{10} 7$ |
| $10_{1}$ | -7 | 26 | - $1 \mathrm{O}_{6}$ |
|  | 8 | 25 | $\square \mathrm{V}_{\mathrm{SS}}$ |
| $\mathrm{V}_{\text {SS }}$ | $\bigcirc$ | 24 | $\square \mathrm{V}$ cc |
| $\mathrm{IO}_{2}$ | $\square 10$ | 23 | $\square 1 \mathrm{O}_{5}$ |
| $1 \mathrm{O}_{3}$ | -11 | 22 | $\mathrm{r}^{10} \mathrm{O}_{4}$ |
|  |  | 21 | $\square A_{12}$ |
| $\mathrm{A}_{4}$ | -13 | 20 | $\mathrm{C}_{11}$ |
| $A_{5}$ |  | 19 | $\mathrm{A}_{10}$ |
| $\mathrm{A}_{6}$ | -15 | 18 | $\square A_{9}$ |
|  | $\square 16$ | 17 | $\square A_{8}$ |

Selection Guide

|  | $\mathbf{- 1 0}$ (Industrial) | Unit |
| :--- | :---: | :---: |
| Maximum Access Time | 10 | ns |
| Maximum Operating Current | 80 | mA |
| Maximum Standby Current | 3 | mA |

## Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.
Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied.................................................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage on $\mathrm{V}_{\mathrm{CC}}$ to Relative GND ${ }^{[2]} \ldots-0.5 \mathrm{~V}$ to +6.0 V
DC Voltage Applied to Outputs
in High-Z State ${ }^{[2]}$ $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[2]}$. $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW) ........................................ 20 mA
Static Discharge Voltage........................................... > 2001V
(per MIL-STD-883, Method 3015)
Latch-up Current
> 200 mA

## Operating Range

| Range | Ambient <br> Temperature | $\mathbf{V}_{\mathbf{C C}}$ | Speed |
| :---: | :---: | :---: | :---: |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ | 10 ns |

Electrical Characteristics (Over the Operating Range)

| Parameter | Description | Test Conditions |  | -10 (Industrial) |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ |  | 2.4 |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | $\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$ |  |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  |  | 2.2 | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage ${ }^{[2]}$ |  |  | -0.5 | 0.8 | V |
| 1 IX | Input Leakage Current | $\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$ |  | -1 | +1 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{Oz}}$ | Output Leakage Current | $\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled |  | -1 | +1 | $\mu \mathrm{A}$ |
| ${ }^{\text {cc }}$ | $\mathrm{V}_{\text {CC }}$ Operating Supply Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{max}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$ | 100 MHz |  | 80 | mA |
|  |  |  | 83 MHz |  | 72 | mA |
|  |  |  | 66 MHz |  | 58 | mA |
|  |  |  | 40 MHz |  | 37 | mA |
| $\mathrm{I}_{\text {SB1 }}$ | Automatic CE Power-Down Current-TTL Inputs | $\begin{aligned} & \operatorname{Max} \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\max } \end{aligned}$ |  |  | 10 | mA |
| $\mathrm{I}_{\text {SB2 }}$ | Automatic CE Power-Down Current-CMOS Inputs | $\begin{aligned} & \operatorname{Max} V_{C C}, \overline{C E} \geq V_{C C}-0.3 V \\ & V_{\text {IN }} \geq V_{C C}-0.3 V, \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$ |  |  | 3 | mA |

## Note

2. $\mathrm{V}_{\mathrm{IL}}(\min )=-2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}(\max )=\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ for pulse durations of less than 5 ns .

## Capacitance ${ }^{[3]}$

| Parameter | Description | Test Conditions | Max | Unit |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathbb{I N}}$ | Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | 6 | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance |  | 8 | pF |

## Thermal Resistance ${ }^{[3]}$

| Parameter | Description | Test Conditions | 400-Mil <br> Wide SOJ | TSOP II | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\Theta_{\text {JA }}$ | Thermal Resistance <br> (Junction to Ambient) | Still Air, soldered on a 3 $\times 4.5$ inch, <br> four-layer printed circuit board | 56.29 | 62.22 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
|  |  |  | 38.14 | 21.43 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\Theta_{\text {JC }}$ | Thermal Resistance <br> (Junction to Case) |  |  |  |  |

AC Test Loads and Waveforms ${ }^{[4]}$


High-Z characteristics:

(c)

## Notes

3. Tested initially and after any design or process changes that may affect these parameters.
4. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

## Switching Characteristics (Over the Operating Range) ${ }^{[5]}$

| Parameter | Description | $\mathbf{- 1 0}$ (Industrial) |  | Unit |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Min | Max |  |

Read Cycle

| $\mathrm{t}_{\text {power }}{ }^{[6]}$ | $\mathrm{V}_{\mathrm{Cc}}$ (typical) to the first access | 100 |  | $\mu \mathrm{S}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{RC}}$ | Read Cycle Time | 10 |  | ns |
| $\mathrm{t}_{\mathrm{AA}}$ | Address to Data Valid |  | 10 | ns |
| $\mathrm{t}_{\mathrm{OHA}}$ | Data Hold from Address Change | 3 |  | ns |
| $\mathrm{t}_{\text {ACE }}$ | $\overline{\mathrm{CE}}$ LOW to Data Valid |  | 10 | ns |
| $\mathrm{t}_{\text {doe }}$ | $\overline{\mathrm{OE}}$ LOW to Data Valid |  | 5 | ns |
| t Lzoe | $\overline{\mathrm{OE}}$ LOW to Low Z | 0 |  | ns |
| $\mathrm{t}_{\text {HZOE }}$ | $\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $Z^{[7,8]}$ |  | 5 | ns |
| t LZCE | $\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$ | 3 |  | ns |
| $\mathrm{t}_{\text {HZCE }}$ | $\overline{\mathrm{CE}}$ HIGH to High Z [7, 8] |  | 5 | ns |
| $\mathrm{t}_{\mathrm{PU}}{ }^{\text {[9] }}$ | $\overline{C E}$ LOW to Power-Up | 0 |  | ns |
| $\mathrm{t}_{\text {PD }}{ }^{\text {[9] }}$ | $\overline{\mathrm{CE}}$ HIGH to Power-Down |  | 10 | ns |

## Write Cycle ${ }^{[10,11]}$

| $\mathrm{t}_{\text {wc }}$ | Write Cycle Time | 10 |  | ns |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {SCE }}$ | $\overline{\mathrm{CE}}$ LOW to Write End | 7 |  | ns |
| $\mathrm{t}_{\text {AW }}$ | Address Set-Up to Write End | 7 |  | ns |
| $\mathrm{t}_{\mathrm{HA}}$ | Address Hold from Write End | 0 |  | ns |
| $\mathrm{t}_{\text {SA }}$ | Address Set-Up to Write Start | 0 |  | ns |
| tPWE | $\overline{\text { WE Pulse Width }}$ | 7 |  | ns |
| $\mathrm{t}_{\text {SD }}$ | Data Set-Up to Write End | 6 |  | ns |
| $\mathrm{t}_{\mathrm{HD}}$ | Data Hold from Write End | 0 |  | ns |
| t LZWE | $\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$ | 3 |  | ns |
| $\mathrm{t}_{\text {HZWE }}$ | $\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$ |  | 5 | ns |

[^0]Data Retention Characteristics (Over the Operating Range)

| Parameter | Description | Conditions | Min | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DR}}$ | $\mathrm{V}_{\mathrm{CC}}$ for Data Retention |  | 2.0 |  | V |
| $\mathrm{I}_{\mathrm{CCDR}}$ | Data Retention Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$, <br> $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}$ |  | 3 | mA |
| $\mathrm{t}_{\mathrm{CDR}}{ }^{[3]}$ | Chip Deselect to Data Retention Time |  | 0 |  | ns |
| $\mathrm{t}_{\mathrm{R}}{ }^{[12]}$ | Operation Recovery Time |  | $\mathrm{t}_{\mathrm{RC}}$ |  | ns |

## Data Retention Waveform



## Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) [13, 14]


Read Cycle No. 2 ( $\overline{\mathrm{OE}}$ Controlled) ${ }^{[14,15]}$


[^1]Switching Waveforms (continued)
Write Cycle No. 1 ( $\overline{\mathrm{CE}}$ Controlled) ${ }^{[16,17]}$


Write Cycle No. 2 ( $\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[16,17]}$


[^2]
## Switching Waveforms (continued)

Write Cycle No. 3 ( $\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[11,17]}$


Truth Table

| $\overline{\mathbf{C E}}$ | $\overline{\mathrm{OE}}$ | $\overline{\mathbf{W E}}$ | $\mathbf{I O}_{\mathbf{0}}-\mathbf{I O}_{\mathbf{7}}$ | Mode | Power |
| :---: | :---: | :---: | :--- | :--- | :--- |
| H | X | X | High Z | Power-Down | Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$ |
| L | L | H | Data Out | Read | Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$ |
| L | X | L | Data In | Write | Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$ |
| L | H | H | High Z | Selected, Outputs Disabled | Active ( $\left.\mathrm{I}_{\mathrm{CC}}\right)$ |

## Ordering Information

| Speed <br> (ns) | Ordering Code | Pakage <br> Diagram | Package Type | Operating <br> Range |
| :---: | :--- | :---: | :--- | :---: |
| 10 | CY7C1019D-10VXI | $51-85033$ | $32-$ pin (400-Mil) Molded SOJ (Pb-free) | Industrial |
|  | CY7C1019D-10ZSXI | $51-85095$ | 32-pin TSOP Type II (Pb-free) |  |

Please contact your local Cypress sales representative for availability of these parts.

CY7C1019D

## Package Diagrams

Figure 1. 32-pin (400-Mil) Molded SOJ (51-85033)


$$
\text { DIMENSIDNS IN INCHES } \frac{M I N_{i}}{M A X}
$$



51-85033-*B

CY7C1019D

Package Diagrams (continued)
Figure 2. 32-pin Thin Small Outline Package Type II (51-85095)


All product or company names mentioned in this document may be the trademarks of their respective holders.

## Document History Page

| Document Title: CY7C1019D, 1-Mbit (128K x 8) Static RAM Document Number: 38-05464 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| REV. | ECN NO. | Issue Date | Orig. of Change | Description of Change |
| ** | 201560 | See ECN | SWI | Advance Information data sheet for C9 IPP |
| *A | 233715 | See ECN | RKF | DC parameters are modified as per EROS (Spec \# 01-2165) Pb -free offering in the Ordering Information |
| *B | 262950 | See ECN | RKF | Added $\mathrm{T}_{\text {power }}$ Spec in Switching Characteristics table Added Data Retention Characteristics table and waveforms Shaded Ordering Information |
| *C | 307598 | See ECN | RKF | Reduced Speed bins to -10 and -12 ns |
| *D | 520647 | See ECN | VKN | Converted from Preliminary to Final <br> Removed Commercial Operating range <br> Removed 12 ns speed bin <br> Added $\mathrm{I}_{\mathrm{CC}}$ values for the frequencies $83 \mathrm{MHz}, 66 \mathrm{MHz}$ and 40 MHz <br> Updated Thermal Resistance table <br> Updated Ordering Information Table <br> Changed Overshoot spec from $\mathrm{V}_{\mathrm{CC}}+2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ in footnote \#2 |
| *E | 802877 | See ECN | VKN | Changed $\mathrm{I}_{\mathrm{Cc}}$ spec from 60 mA to 80 mA for $100 \mathrm{MHz}, 55 \mathrm{~mA}$ to 72 mA for $83 \mathrm{MHz}, 45 \mathrm{~mA}$ to 58 mA for $66 \mathrm{MHz}, 30 \mathrm{~mA}$ to 37 mA for 40 MHz |


[^0]:    Notes
    5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{L}} \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
    6. $t_{\text {POWER }}$ gives the minimum amount of time that the power supply should be at typical $\mathrm{V}_{\mathrm{CC}}$ values until the first memory access can be performed.
    7. $t_{H Z O E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in (c) of "AC Test Loads and Waveforms ${ }^{[4] \text { " }}$ on page 4 . Transition is measured when the outputs enter a high impedance state.
    8. At any given temperature and voltage condition, $t_{H Z C E}$ is less than $t_{L Z C E}, t_{H Z O E}$ is less than $t_{L Z O E}$, and $t_{H Z W E}$ is less than $t_{L Z W E}$ for any given device.
    9. This parameter is guaranteed by design and is not tested.
    10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and $\overline{\mathrm{WE}} \mathrm{LOW}$. $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
    11. The minimum write cycle time for Write Cycle no. 3 ( $\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$ ) is the sum of $\mathrm{t}_{\text {HZWE }}$ and $\mathrm{t}_{\text {SD }}$.

[^1]:    Notes
    12. Full device operation requires linear $V_{C C}$ ramp from $V_{D R}$ to $V_{C C(\min )} \geq 50 \mu \mathrm{~s}$ or stable at $V_{C C(\min )} \geq 50 \mu \mathrm{~s}$.
    13. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
    14. WE is HIGH for Read cycle.
    15. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

[^2]:    Notes
    16. Data $I O$ is high impedance if $\overline{O E}=V_{I H}$.
    17. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
    18. During this period the IOs are in the output state and input signals should not be applied.

