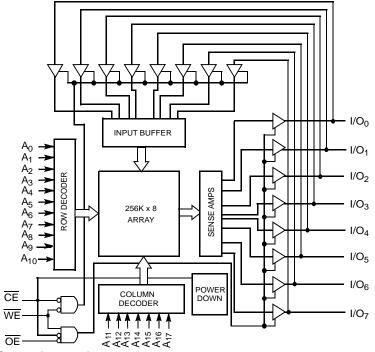


2-Mbit (256K x 8)Static RAM

Features

- Pin and function compatible with CY7C1010CV33
- High speed
 - $t_{AA} = 10 \text{ ns}$
- · Low active power
 - I_{CC} = 90 mA @ 10 ns
- Low CMOS standby power
 - $I_{SB2} = 10 \text{ mA}$
- 2.0V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in Lead-Free 44-pin TSOP II package

Functional Description^[1]


The CY7C1010DV33 is a high-performance CMOS Static RAM organized as 256K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A_0 through A_{17}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{OE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1010DV33 is available in standard 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Logic Block Diagram

Pin Configuration TSOP II

Selection Guide

	-10	Unit
Maximum Access Time	10	ns
Maximum Operating Current	90	mA
Maximum CMOS Standby Current	10	mA

Note:

1. For guidelines on SRAM system design, please refer to the System Design Guidelines Cypress application note, available on the internet at www.cypress.com

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[2]}$ –0.5V to +4.6V

DC Input Voltage ^[2]	0.3V to V _{CC} +0.3V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	$3.3V\pm0.3V$

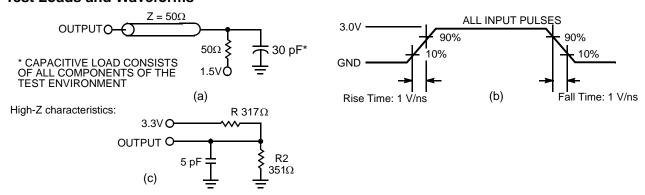
Electrical Characteristics Over the Operating Range

	Test Conditions				-10	
Parameter	Description			Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.; I_{OH} = -4.0 \text{ m/s}$	4	2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.; I_{OL} = 8.0 \text{ mA}$			0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[2]			-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Output	ıt Disabled	-1	+1	μΑ
I _{cc}	V _{CC} Operating Supply Current	V _{CC} = Max.,	100 MHz		90	mA
		$f = f_{MAX} = 1/t_{RC}$	83 MHz		80	
			66 MHz		70	
			40 MHz		60	
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$, $V_{IN} \ge V_{IN} \le V_{IL}$, $f = f_{MAX}$	≥ V _{IH} or		20	mA
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3$ $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le$			10	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 3.3V$	8	pF

Thermal Resistance^[3]


Parameter	Description	Test Conditions	44-TSOP-II	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	50.66	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)		17.77	°C/W

Notes:

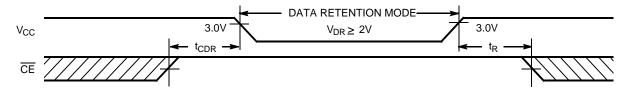
- 2. $V_{\rm IL}$ (min.) = -2.0V and $V_{\rm IH}$ (max.) = $V_{\rm CC}$ + 2.0V for pulse durations of less than 20 ns. 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms^[4]

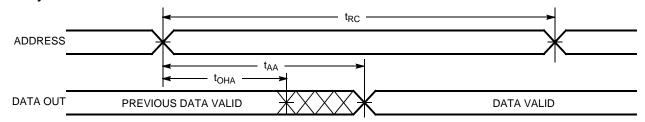
AC Switching Characteristics Over the Operating Range [5]

		-1	0	
Parameter	Description	Min.	Max.	Unit
Read Cycle	•	1		
t _{power} [6]	V _{CC} (typical) to the first access	100		μS
t _{RC}	Read Cycle Time	10		ns
t _{AA}	Address to Data Valid		10	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		10	ns
t _{DOE}	OE LOW to Data Valid		5	ns
t _{LZOE}	OE LOW to Low-Z	0		ns
t _{HZOE}	OE HIGH to High-Z ^[7, 8]		5	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	3		ns
t _{HZCE} CE HIGH to High-Z ^[7, 8]			5	ns
t _{PU}	CE LOW to Power-up			ns
t _{PD}	CE HIGH to Power-down		10	ns
Write Cycle ^[9, 10]	•	•		
t _{WC}	Write Cycle Time	10		ns
t _{SCE}	CE LOW to Write End	7		ns
t _{AW}	Address Set-up to Write End	7		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	7		ns
t _{SD}	Data Set-up to Write End	5		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	3		ns
t _{HZWE}	WE LOW to High-Z ^[7, 8]		5	ns

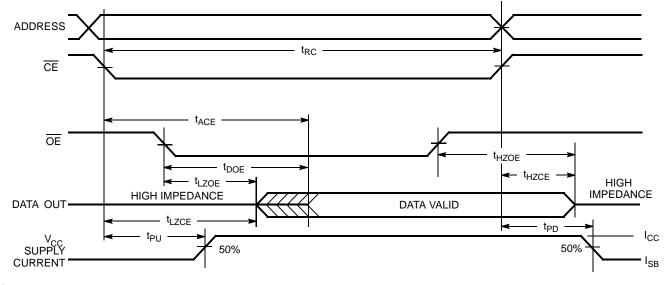
Notes:


- 4. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load
- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
- 6. tpower gives the minimum amount of time that the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.
 7. thich impedance state.
- Impedance state.
 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 9. The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
 10. The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics Over the Operating Range [12]


Parameter	Description	Conditions	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	V V 20V OF V 20V		10	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$V_{CC} = V_{DR} = 2.0V, CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$	0		ns
t _R ^[11]	Operation Recovery Time	- IN CC	t _{RC}		ns

Data Retention Waveform

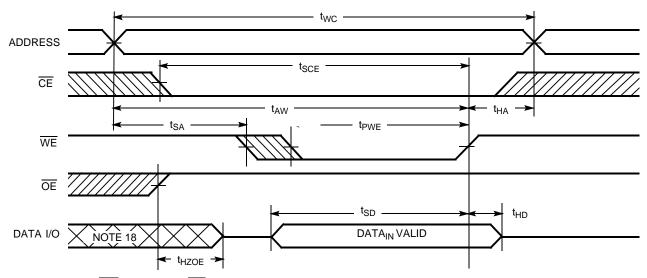


Switching Waveforms

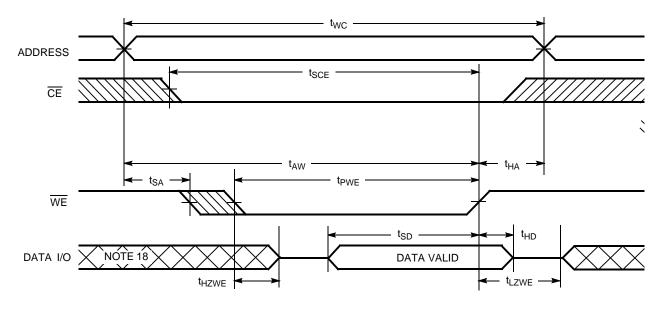
Read Cycle No. 1^[13, 14]

Read Cycle No. 2 (OE Controlled)[14, 15]

- 11. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50 \,\mu s$ or stable at $V_{CC(min.)} \ge 50 \,\mu s$.
- 12. No inputs may exceed V_{CC} + 0.3V


 13. Device is continuously selected. OE, CE = V_{IL}.

 14. WE is HIGH for Read cycle.
- 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled, OE HIGH During Write)[16, 17]

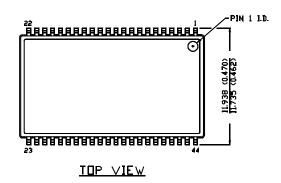
Write Cycle No. 2 (WE Controlled, OE LOW)[17]

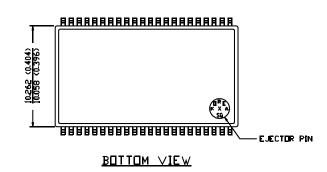
Notes:

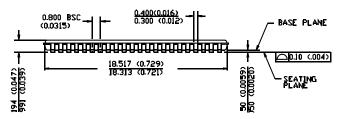
16. Data I/O is high-impedance if $\overline{\text{OE}} = \text{V}_{|\mathbf{H}^{\perp}}$ 17. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
18. During this period, the I/Os are in output state and input signals should not be applied.

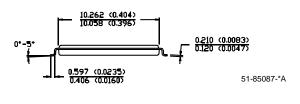
Truth Table

CE	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Х	Х	High-Z	Power-down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1010DV33-10ZSXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial


Package Diagram


44-pin TSOP II (51-85087)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	342195	See ECN	PCI	New Data sheet
*A	459073	See ECN	NXR	Converted Preliminary to Final. Removed Commercial Operating Range from product offering. Removed -8 ns and -12 speed bin Removed the Pin definitions table. Modified Maximum Ratings for DC input voltage from -0.5V to -0.3V and $V_{\rm C}$ + 0.5V to $V_{\rm CC}$ + 0.3V Changed $I_{\rm CC}$ max from 65 mA to 90 mA Changed the description of $I_{\rm IX}$ from "Input Load Current" to "Input Leakage Current" Updated the Thermal Resistance table. Updated footnote #7 on High-Z parameter measurement Added footnote #12 Updated the Ordering Information and replaced Package Name column wit Package Diagram in the Ordering Information table.